David A Kring

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4043054/publications.pdf Version: 2024-02-01

DAVID & KRINC

#	Article	IF	CITATIONS
1	The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science, 2010, 327, 1214-1218.	12.6	1,140
2	Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology, 1991, 19, 867.	4.4	768
3	Support for the Lunar Cataclysm Hypothesis from Lunar Meteorite Impact Melt Ages. , 2000, 290, 1754-1756.		279
4	Impact-induced hydrothermal activity on early Mars. Journal of Geophysical Research, 2005, 110, .	3.3	222
5	A sawtooth-like timeline for the first billion years of lunar bombardment. Earth and Planetary Science Letters, 2012, 355-356, 144-151.	4.4	217
6	The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 255, 4-21.	2.3	189
7	Widespread mixing and burial of Earth's Hadean crust by asteroid impacts. Nature, 2014, 511, 578-582.	27.8	187
8	Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases. Journal of Geophysical Research, 1998, 103, 28607-28625.	3.3	182
9	The formation of peak rings in large impact craters. Science, 2016, 354, 878-882.	12.6	181
10	Constraining the size of the South Pole-Aitken basin impact. Icarus, 2012, 220, 730-743.	2.5	131
11	Impact-generated hydrothermal systems capable of forming phyllosilicates on Noachian Mars. Geology, 2009, 37, 1091-1094.	4.4	129
12	Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature, 2018, 558, 288-291.	27.8	123
13	The onset of the lunar cataclysm as recorded in its ancient crater populations. Earth and Planetary Science Letters, 2012, 325-326, 27-38.	4.4	103
14	Osmium isotope and highly siderophile element systematics of lunar impact melt breccias: Implications for the late accretion history of the Moon and Earth. Geochimica Et Cosmochimica Acta, 2008, 72, 3022-3042.	3.9	102
15	Lunar volcanism produced a transient atmosphere around the ancient Moon. Earth and Planetary Science Letters, 2017, 478, 175-178.	4.4	101
16	Numerical modeling of impactâ€induced hydrothermal activity at the Chicxulub crater. Meteoritics and Planetary Science, 2007, 42, 93-112.	1.6	94
17	Differentiation of the South Pole–Aitken basin impact melt sheet: Implications for lunar exploration. Journal of Geophysical Research E: Planets, 2014, 119, 1110-1133.	3.6	89
18	Direct Detection of Projectile Relics from the End of the Lunar Basin–Forming Epoch. Science, 2012, 336, 1426-1429.	12.6	88

#	Article	IF	CITATIONS
19	Petrogenesis of an augite-bearing melt rock in the Chicxulub structure and its relationship to K/T impact spherules in Haiti. Nature, 1992, 358, 141-144.	27.8	85
20	Trajectories and distribution of material ejected from the Chicxulub impact crater: Implications for postimpact wildfires. Journal of Geophysical Research, 2002, 107, 6-1.	3.3	84
21	Environmental Consequences of Impact Cratering Events as a Function of Ambient Conditions on Earth. Astrobiology, 2003, 3, 133-152.	3.0	80
22	The dimensions of the Chicxulub impact crater and impact melt sheet. Journal of Geophysical Research, 1995, 100, 16979.	3.3	79
23	Numerical modeling of an impact-induced hydrothermal system at the Sudbury crater. Journal of Geophysical Research, 2004, 109, .	3.3	79
24	Hydrothermal alteration in the core of the Yaxcopoilâ€1 borehole, Chicxulub impact structure, Mexico. Meteoritics and Planetary Science, 2004, 39, 1199-1221.	1.6	76
25	Rock fluidization during peak-ring formation of large impact structures. Nature, 2018, 562, 511-518.	27.8	74
26	Probing the hydrothermal system of the Chicxulub impact crater. Science Advances, 2020, 6, eaaz3053.	10.3	69
27	Spectral and photogeologic mapping of Schrödinger Basin and implications for post-South Pole-Aitken impact deep subsurface stratigraphy. Icarus, 2013, 223, 131-148.	2.5	68
28	Gullies and landslides on the Moon: Evidence for dryâ€granular flows. Journal of Geophysical Research E: Planets, 2013, 118, 206-223.	3.6	68
29	An asteroidal origin for water in the Moon. Nature Communications, 2016, 7, 11684.	12.8	68
30	Numerical modeling of the formation and structure of the Orientale impact basin. Journal of Geophysical Research E: Planets, 2013, 118, 963-979.	3.6	67
31	Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364. Earth and Planetary Science Letters, 2018, 495, 1-11.	4.4	65
32	Impact lithologies and their emplacement in the Chicxulub impact crater: Initial results from the Chicxulub Scientific Drilling Project, Yaxcopoil, Mexico. Meteoritics and Planetary Science, 2004, 39, 879-897.	1.6	63
33	The Moon: An Archive of Small Body Migration in the Solar System. Earth, Moon and Planets, 2016, 118, 133-158.	0.6	60
34	Hypervelocity collisions into continental crust composed of sediments and an underlying crystalline basement: comparing the Ries (â^¼24 km) and Chicxulub (â^¼180 km) impact craters. Chemie Der Erde, 2005, 6 1-46.	552.0	59
35	A lunar L2-Farside exploration and science mission concept with the Orion Multi-Purpose Crew Vehicle and a teleoperated lander/rover. Advances in Space Research, 2013, 52, 306-320.	2.6	59
36	⁴⁰ Ar/ ³⁹ Ar ages of impacts involving ordinary chondrite meteorites. Geological Society Special Publication, 2014, 378, 333-347.	1.3	59

#	Article	IF	CITATIONS
37	Cat Mountain: A meteoritic sample of an impact-melted asteroid regolith. Journal of Geophysical Research, 1996, 101, 29353-29371.	3.3	57
38	Recent shallow moonquake and impact-triggered boulder falls on the Moon: New insights from the SchrĶdinger basin. Journal of Geophysical Research E: Planets, 2016, 121, 147-179.	3.6	57
39	Terrestrial-like zircon in a clast from an Apollo 14 breccia. Earth and Planetary Science Letters, 2019, 510, 173-185.	4.4	56
40	Impact-induced perturbations of atmospheric sulfur. Earth and Planetary Science Letters, 1996, 140, 201-212.	4.4	52
41	Globally distributed iridium layer preserved within the Chicxulub impact structure. Science Advances, 2021, 7, .	10.3	47
42	Air blast produced by the Meteor Crater impact event and a reconstruction of the affected environment. Meteoritics and Planetary Science, 1997, 32, 517-530.	1.6	45
43	Altered spherules of impact melt and associated relic glass from the K/T boundary sediments in Haiti. Geochimica Et Cosmochimica Acta, 1991, 55, 1737-1742.	3.9	44
44	⁴⁰ Arâ€ ³⁹ Ar ages of H hondrite impact melt breccias. Meteoritics and Planetary Science, 2009, 44, 747-762.	1.6	44
45	Estimating transient crater size using the crustal annular bulge: Insights from numerical modeling of lunar basinâ€scale impacts. Geophysical Research Letters, 2012, 39, .	4.0	40
46	Peak-ring structure and kinematics from a multi-disciplinary study of the Schrödinger impact basin. Nature Communications, 2016, 7, 13161.	12.8	38
47	High-priority lunar landing sites for in situ and sample return studies of polar volatiles. Planetary and Space Science, 2014, 101, 149-161.	1.7	36
48	Robotic traverse and sample return strategies for a lunar farside mission to the Schrödinger basin. Advances in Space Research, 2015, 55, 1241-1254.	2.6	36
49	Science on the lunar surface facilitated by low latency telerobotics from a Lunar Orbital Platform - Gateway. Acta Astronautica, 2019, 154, 195-203.	3.2	36
50	H/L chondrite LaPaz Icefield 031047 – A feather of Icarus?. Geochimica Et Cosmochimica Acta, 2011, 75, 6140-6159.	3.9	31
51	Osmium isotope constraints on the proportion of bolide component in Chicxulub impact melt rocks. Meteoritics and Planetary Science, 2004, 39, 1003-1008.	1.6	29
52	Geochemistry, geochronology and petrogenesis of Maya Block granitoids and dykes from the Chicxulub Impact Crater, Gulf of MA©xico: Implications for the assembly of Pangea. Gondwana Research, 2020, 82, 128-150.	6.0	26
53	Petrography, geochronology and source terrain characteristics of lunar meteorites Dhofar 925, 961 and Sayh al Uhaymir 449. Geochimica Et Cosmochimica Acta, 2014, 144, 299-325.	3.9	25
54	Identifying the geologic context of Apollo 17 impact melt breccias. Earth and Planetary Science Letters, 2016, 436, 64-70.	4.4	24

#	Article	IF	CITATIONS
55	Using Boulder Tracks as a Tool to Understand the Bearing Capacity of Permanently Shadowed Regions of the Moon. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006157.	3.6	24
56	Identification and characterization of science-rich landing sites for lunar lander missions using integrated remote sensing observations. Advances in Space Research, 2012, 50, 1647-1665.	2.6	23
57	Identification of magnetite in lunar regolith breccia 60016: Evidence for oxidized conditions at the lunar surface. Meteoritics and Planetary Science, 2015, 50, 1157-1172.	1.6	22
58	Geologic context and potential EVA targets at the lunar south pole. Advances in Space Research, 2020, 66, 1247-1264.	2.6	22
59	Framework for Coordinated Efforts in the Exploration of Volatiles in the South Polar Region of the Moon. Planetary Science Journal, 2021, 2, 103.	3.6	22
60	Analysis of Lunar Boulder Tracks: Implications for Trafficability of Pyroclastic Deposits. Journal of Geophysical Research E: Planets, 2019, 124, 1296-1314.	3.6	21
61	Hydrothermal alteration associated with the Chicxulub impact crater upper peak-ring breccias. Earth and Planetary Science Letters, 2020, 547, 116425.	4.4	21
62	Analyses of robotic traverses and sample sites in the Schrödinger basin for the HERACLES human-assisted sample return mission concept. Advances in Space Research, 2016, 58, 1050-1065.	2.6	20
63	Lunar south pole boulders and boulder tracks: Implications for crew and rover traverses. Icarus, 2020, 348, 113850.	2.5	20
64	Ignition threshold for impact-generated fires. Journal of Geophysical Research, 2004, 109, .	3.3	19
65	The Ar-Ar age and petrology of Miller Range 05029: Evidence for a large impact in the very early solar system. Meteoritics and Planetary Science, 2010, 45, 1868-1888.	1.6	19
66	Microbial Sulfur Isotope Fractionation in the Chicxulub Hydrothermal System. Astrobiology, 2021, 21, 103-114.	3.0	18
67	Highâ€resolution microstructural and compositional analyses of shock deformed apatite from the peak ring of the Chicxulub impact crater. Meteoritics and Planetary Science, 2020, 55, .	1.6	17
68	Chicxulub and the Exploration of Large Peak-Ring Impact Craters through Scientific Drilling. GSA Today, 2017, , 4-8.	2.0	17
69	Provenance of mineral phases in the Cretaceous-Tertiary boundary sediments exposed on the southern peninsula of Haiti. Earth and Planetary Science Letters, 1994, 128, 629-641.	4.4	16
70	Potential sample sites for South Pole–Aitken basin impact melt within the Schrödinger basin. Earth and Planetary Science Letters, 2015, 427, 31-36.	4.4	16
71	Scaling of basin-sized impacts and the influence of target temperature. Special Paper of the Geological Society of America, 2015, , 99-113.	0.5	15
72	Reevaluating the impact cratering kill curve. Meteoritics and Planetary Science, 2002, 37, 1648-1649.	1.6	15

#	Article	IF	CITATIONS
73	U-Pb memory behavior in Chicxulub's peak ring — Applying U-Pb depth profiling to shocked zircon. Chemical Geology, 2019, 525, 356-367.	3.3	15
74	Winding down the Chicxulub impact: The transition between impact and normal marine sedimentation near ground zero. Marine Geology, 2020, 430, 106368.	2.1	15
75	Shock impedance amplified impact deformation of zircon in granitic rocks from the Chicxulub impact crater. Earth and Planetary Science Letters, 2021, 575, 117201.	4.4	15
76	Calibrating several key lunar stratigraphic units representing 4 b.y. of lunar history within SchrĶdinger basin. , 2011, , .		14
77	Traverses for the ISECG-GER design reference mission for humans on the lunar surface. Advances in Space Research, 2019, 63, 692-727.	2.6	14
78	The isotopic composition of volatiles in the unique Bench Crater carbonaceous chondrite impactor found in the Apollo 12 regolith. Earth and Planetary Science Letters, 2020, 540, 116265.	4.4	14
79	The Habitat of the Nascent Chicxulub Crater. AGU Advances, 2020, 1, e2020AV000208.	5.4	12
80	Evidence of Carboniferous arc magmatism preserved in the Chicxulub impact structure. Bulletin of the Geological Society of America, 2022, 134, 241-260.	3.3	12
81	Lacustrine Fossil Preservation in Acidic Environments: Implications of Experimental and Field Studies for the Cretaceous–Paleogene Boundary Acid Rain Trauma. Palaios, 2005, 20, 376-389.	1.3	10
82	U–Th–Pb systematics in zircon and apatite from the Chicxulub impact crater, Yucatán, Mexico. Geological Magazine, 2018, 155, 1330-1350.	1.5	9
83	Numerical modeling of the formation of Shackleton crater at the lunar south pole. Icarus, 2021, 354, 113992.	2.5	9
84	Shaping of the Present-Day Deep Biosphere at Chicxulub by the Impact Catastrophe That Ended the Cretaceous. Frontiers in Microbiology, 2021, 12, 668240.	3.5	8
85	Prominent volcanic source of volatiles in the south polar region of the Moon. Advances in Space Research, 2021, 68, 4691-4701.	2.6	8
86	Stable isotope record of post-impact fluid activity in the core of the Yaxcopoil-1 borehole, Chicxulub impact structure, Mexico. , 2005, , .		7
87	Ocean resurge-induced impact melt dynamics on the peak-ring of the Chicxulub impact structure, Mexico. International Journal of Earth Sciences, 2021, 110, 2619-2636.	1.8	5
88	A low-temperature, meteoric water-dominated origin for smectitic clay minerals in the Chicxulub impact crater upper peak ring, as inferred from their oxygen and hydrogen isotope compositions. Chemical Geology, 2022, 588, 120639.	3.3	5
89	Human-assisted Sample Return Mission at the SchrĶdinger Basin, Lunar Far Side, Using a New Geologic Map and Rover Traverses. Planetary Science Journal, 2021, 2, 51.	3.6	4
90	Hydrogen Production from Alteration of Chicxulub Crater Impact Breccias: Potential Energy Source for a Subsurface Microbial Ecosystem. Astrobiology, 2021, 21, 1547-1564.	3.0	4

#	Article	IF	CITATIONS
91	Borehole Seismic Observations From the Chicxulub Impact Drilling: Implications for Seismic Reflectivity and Impact Damage. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	1
92	Petrophysics of Chicxulub impact crater's peak ring. Journal of Geophysical Research: Solid Earth, 0, , .	3.4	0