
Christopher M Overall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/404046/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nature Reviews Cancer, 2006, 6, 227-239.	28.4	1,104
2	Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nature Cell Biology, 2007, 9, 893-904.	10.3	888
3	Human and mouse proteases: a comparative genomic approach. Nature Reviews Genetics, 2003, 4, 544-558.	16.3	846
4	Inflammation Dampened by Gelatinase A Cleavage of Monocyte Chemoattractant Protein-3. Science, 2000, 289, 1202-1206.	12.6	720
5	Protease degradomics: A new challenge for proteomics. Nature Reviews Molecular Cell Biology, 2002, 3, 509-519.	37.0	688
6	Targeting Tumor Hypoxia: Suppression of Breast Tumor Growth and Metastasis by Novel Carbonic Anhydrase IX Inhibitors. Cancer Research, 2011, 71, 3364-3376.	0.9	662
7	Independent Regulation of Collagenase, 72-kDa Progelatinase, and Metalloendoproteinase Inhibitor Expression in Human Fibroblasts by Transforming Growth Factor-β. Journal of Biological Chemistry, 1989, 264, 1860-1869.	3.4	581
8	Matrix Metalloproteinase Activity Inactivates the CXC Chemokine Stromal Cell-derived Factor-1. Journal of Biological Chemistry, 2001, 276, 43503-43508.	3.4	576
9	Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nature Genetics, 2003, 35, 252-257.	21.4	549
10	Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood, 2002, 100, 1160-1167.	1.4	528
11	Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nature Biotechnology, 2010, 28, 281-288.	17.5	510
12	Independent regulation of collagenase, 72-kDa progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-beta. Journal of Biological Chemistry, 1989, 264, 1860-9.	3.4	504
13	Matrix metalloproteinases: What do they not do? New substrates and biological roles identified by murine models and proteomics. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 39-54.	4.1	449
14	Antisense RNA-induced reduction in murine TIMP levels confers oncogenicity on Swiss 3T3 cells. Science, 1989, 243, 947-950.	12.6	442
15	Molecular Determinants of Metalloproteinase Substrate Specificity: Matrix Metalloproteinase Substrate Binding Domains, Modules, and Exosites. Molecular Biotechnology, 2002, 22, 051-086.	2.4	422
16	Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites. Nature Biotechnology, 2008, 26, 685-694.	17.5	357
17	Transcriptional and post-transcriptional regulation of 72-kDa gelatinase/type IV collagenase by transforming growth factor-beta 1 in human fibroblasts. Comparisons with collagenase and tissue inhibitor of matrix metalloproteinase gene expression. Journal of Biological Chemistry, 1991, 266, 14064-71.	3.4	329
18	In search of partners: linking extracellular proteases to substrates. Nature Reviews Molecular Cell Biology, 2007, 8, 245-257.	37.0	326

#	Article	IF	CITATIONS
19	Towards third generation matrix metalloproteinase inhibitors for cancer therapy. British Journal of Cancer, 2006, 94, 941-946.	6.4	312
20	HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegeneration. Nature Neuroscience, 2003, 6, 1064-1071.	14.8	295
21	Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates. Nature Protocols, 2011, 6, 1578-1611.	12.0	291
22	Missing the target: matrix metalloproteinase antitargets in inflammation and cancer. Trends in Pharmacological Sciences, 2013, 34, 233-242.	8.7	282
23	Membrane protease proteomics: Isotope-coded affinity tag MS identification of undescribed MT1–matrix metalloproteinase substrates. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6917-6922.	7.1	273
24	Multiplex N-terminome Analysis of MMP-2 and MMP-9 Substrate Degradomes by iTRAQ-TAILS Quantitative Proteomics. Molecular and Cellular Proteomics, 2010, 9, 894-911.	3.8	240
25	Matrix metalloproteinase proteomics: substrates, targets, and therapy. Current Opinion in Cell Biology, 2009, 21, 645-653.	5.4	239
26	Microbiota and crevicular fluid collagenase activity in the osseointegrated dental implant sulcus: A comparison of sites in edentulous and partially edentulous patients. Journal of Periodontal Research, 1989, 24, 96-105.	2.7	235
27	Subsite Mapping of the Human Pancreatic α-Amylase Active Site through Structural, Kinetic, and Mutagenesis Techniquesâ€,‡. Biochemistry, 2000, 39, 4778-4791.	2.5	231
28	The matrix metalloproteinase gelatinase A in human dentine. Archives of Oral Biology, 2000, 45, 757-765.	1.8	228
29	Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood, 2002, 100, 1160-7.	1.4	225
30	A new transcriptional role for matrix metalloproteinase-12 in antiviral immunity. Nature Medicine, 2014, 20, 493-502.	30.7	218
31	Proteomics Discovery of Metalloproteinase Substrates in the Cellular Context by iTRAQâ,,¢ Labeling Reveals a Diverse MMP-2 Substrate Degradome. Molecular and Cellular Proteomics, 2007, 6, 611-623.	3.8	214
32	Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx. Blood, 2008, 112, 3455-3464.	1.4	213
33	Concanavalin A produces a matrix-degradative phenotype in human fibroblasts. Induction and endogenous activation of collagenase, 72-kDa gelatinase, and Pump-1 is accompanied by the suppression of the tissue inhibitor of matrix metalloproteinases Journal of Biological Chemistry, 1990, 265, 21141-21151.	3.4	207
34	Degradomics: Systems biology of the protease web. Pleiotropic roles of MMPs in cancer. Cancer and Metastasis Reviews, 2006, 25, 69-75.	5.9	200
35	Identification of Candidate Angiogenic Inhibitors Processed by Matrix Metalloproteinase 2 (MMP-2) in Cell-Based Proteomic Screens: Disruption of Vascular Endothelial Growth Factor (VEGF)/Heparin Affin Regulatory Peptide (Pleiotrophin) and VEGF/Connective Tissue Growth Factor Angiogenic Inhibitory Complexes by MMP-2 Proteolysis. Molecular and Cellular Biology, 2007, 27, 8454-8465.	2.3	200
36	Extracellular Matrix Binding Properties of Recombinant Fibronectin Type II-like Modules of Human 72-kDa Gelatinase/Type IV Collagenase. Journal of Biological Chemistry, 1995, 270, 11555-11566.	3.4	198

#	Article	IF	CITATIONS
37	Updated Biological Roles for Matrix Metalloproteinases and New "Intracellular―Substrates Revealed by Degradomics. Biochemistry, 2009, 48, 10830-10845.	2.5	195
38	Proteolytic host cell enzymes in gingival crevice fluid. Periodontology 2000, 2003, 31, 77-104.	13.4	193
39	Concanavalin A produces a matrix-degradative phenotype in human fibroblasts. Induction and endogenous activation of collagenase, 72-kDa gelatinase, and Pump-1 is accompanied by the suppression of the tissue inhibitor of matrix metalloproteinases. Journal of Biological Chemistry, 1990, 265, 21141-51.	3.4	191
40	The Human Plasma Proteome Draft of 2017: Building on the Human Plasma PeptideAtlas from Mass Spectrometry and Complementary Assays. Journal of Proteome Research, 2017, 16, 4299-4310.	3.7	185
41	LPS Responsiveness and Neutrophil Chemotaxis In Vivo Require PMN MMP-8 Activity. PLoS ONE, 2007, 2, e312.	2.5	181
42	Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses. Matrix Biology, 2016, 49, 37-60.	3.6	177
43	Can we predict protein from mRNA levels?. Nature, 2017, 547, E19-E20.	27.8	170
44	Human Proteome Project Mass Spectrometry Data Interpretation Guidelines 2.1. Journal of Proteome Research, 2016, 15, 3961-3970.	3.7	158
45	Cellular Activation of MMP-2 (Gelatinase A) by MT2-MMP Occurs via a TIMP-2-independent Pathway. Journal of Biological Chemistry, 2001, 276, 47402-47410.	3.4	156
46	A high-stringency blueprint of the human proteome. Nature Communications, 2020, 11, 5301.	12.8	152
47	Functional Interplay between Type I Collagen and Cell Surface Matrix Metalloproteinase Activity. Journal of Biological Chemistry, 2001, 276, 24833-24842.	3.4	151
48	Pharmacoproteomics of a Metalloproteinase Hydroxamate Inhibitor in Breast Cancer Cells: Dynamics of Membrane Type 1 Matrix Metalloproteinase-Mediated Membrane Protein Shedding. Molecular and Cellular Biology, 2008, 28, 4896-4914.	2.3	149
49	Expression of matrix metalloproteinases (MMP-1 and -2) and their inhibitors (TIMP-1, -2 and -3) in oral lichen planus, dysplasia, squamous cell carcinoma and lymph node metastasis. British Journal of Cancer, 1998, 77, 2239-2245.	6.4	148
50	Characterization of the Distinct Collagen Binding, Helicase and Cleavage Mechanisms of Matrix Metalloproteinase 2 and 14 (Gelatinase A and MT1-MMP). Journal of Biological Chemistry, 2004, 279, 43336-43344.	3.4	146
51	Proteolytic Cleavage—Mechanisms, Function, and "Omic―Approaches for a Near-Ubiquitous Posttranslational Modification. Chemical Reviews, 2018, 118, 1137-1168.	47.7	145
52	Proteome-wide analysis of protein carboxy termini: C terminomics. Nature Methods, 2010, 7, 508-511.	19.0	144
53	Specific, High Affinity Binding of Tissue Inhibitor of Metalloproteinases-4 (TIMP-4) to the COOH-terminal Hemopexin-like Domain of Human Gelatinase A. Journal of Biological Chemistry, 1997, 272, 15496-15500.	3.4	143
54	The paracaspase MALT1 cleaves HOIL1 reducing linear ubiquitination by LUBAC to dampen lymphocyte NF-κB signalling. Nature Communications, 2015, 6, 8777.	12.8	139

#	Article	IF	CITATIONS
55	Network Analyses Reveal Pervasive Functional Regulation Between Proteases in the Human Protease Web. PLoS Biology, 2014, 12, e1001869.	5.6	137
56	Metadegradomics. Molecular and Cellular Proteomics, 2008, 7, 1925-1951.	3.8	134
57	The Peri-islet Basement Membrane, a Barrier to Infiltrating Leukocytes in Type 1 Diabetes in Mouse and Human. Diabetes, 2013, 62, 531-542.	0.6	130
58	Specific alterations in the expression of ?3?1 and ?6?4 integrins in highly invasive and metastatic variants of human prostate carcinoma cells selected by in vitro invasion through reconstituted basement membrane. Clinical and Experimental Metastasis, 1993, 11, 391-400.	3.3	129
59	LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification. Nature Methods, 2015, 12, 55-58.	19.0	128
60	Matrix Metalloproteinase-8 Facilitates Neutrophil Migration through the Corneal Stromal Matrix by Collagen Degradation and Production of the Chemotactic Peptide Pro-Gly-Pro. American Journal of Pathology, 2008, 173, 144-153.	3.8	127
61	Toward [18F]-Labeled Aryltrifluoroborate Radiotracers: In Vivo Positron Emission Tomography Imaging of Stable Aryltrifluoroborate Clearance in Mice. Journal of the American Chemical Society, 2008, 130, 12045-12055.	13.7	127
62	Proteomic identification of multitasking proteins in unexpected locations complicates drug targeting. Nature Reviews Drug Discovery, 2009, 8, 935-948.	46.4	127
63	Proteolytic Post-translational Modification of Proteins: Proteomic Tools and Methodology. Molecular and Cellular Proteomics, 2013, 12, 3532-3542.	3.8	127
64	Discovery of Chemokine Substrates for Matrix Metalloproteinases by Exosite Scanning: A New Tool for Degradomics. Biological Chemistry, 2002, 383, 1059-66.	2.5	124
65	Proteome TopFIND 3.0 with TopFINDer and PathFINDer: database and analysis tools for the association of protein termini to pre- and post-translational events. Nucleic Acids Research, 2015, 43, D290-D297.	14.5	124
66	Collagen Binding Properties of the Membrane Type-1 Matrix Metalloproteinase (MT1-MMP) Hemopexin C Domain. Journal of Biological Chemistry, 2002, 277, 39005-39014.	3.4	123
67	Activation of Neutrophil Collagenase in Periodontitis. Infection and Immunity, 1999, 67, 2319-2326.	2.2	123
68	Identification and characterization of enamel proteinases isolated from developing enamel. Amelogeninolytic serine proteinases are associated with enamel maturation in pig. Biochemical Journal, 1988, 256, 965-972.	3.7	122
69	New intracellular activities of matrix metalloproteinases shine in the moonlight. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 2043-2055.	4.1	122
70	Metalloproteases meprin α and meprin β are C- and N-procollagen proteinases important for collagen assembly and tensile strength. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14219-14224.	7.1	115
71	Regulation of the expression of a secreted acidic protein rich in cysteine (SPARC) in human fibroblasts by transforming growth factor beta. Comparison of transcriptional and post-transcriptional control with fibronectin and type I collagen. FEBS Journal, 1991, 197, 519-528.	0.2	114
	Ticque Inhibitor of Matallaprotainage (TIMD) 2 Acto Supergistically with Synthetic Matrix		

Tissue Inhibitor of Metalloproteinase (TIMP)-2 Acts Synergistically with Synthetic Matrix Metalloproteinase (MMP) Inhibitors but Not with TIMP-4 to Enhance the (Membrane Type) Tj ETQq0 0 0 rgBT /Oversock 10 Tf150 57 Td (

#	Article	IF	CITATIONS
73	Epithelial–mesenchymal transition (EMT) is not sufficient for spontaneous murine breast cancer metastasis. Developmental Dynamics, 2008, 237, 2755-2768.	1.8	114
74	Proteomic Analyses Reveal an Acidic Prime Side Specificity for the Astacin Metalloprotease Family Reflected by Physiological Substrates. Molecular and Cellular Proteomics, 2011, 10, M111.009233.	3.8	113
75	Identification of polymorphonuclear leukocyte collagenase and gelatinase activities in mouthrinse samples: Correlation with periodontal disease activity in adult and juvenile periodontitis. Journal of Periodontal Research, 1990, 25, 257-267.	2.7	112
76	Activated caspase-6 and caspase-6-cleaved fragments of huntingtin specifically colocalize in the nucleus. Human Molecular Genetics, 2008, 17, 2390-2404.	2.9	112
77	The substrate degradome of meprin metalloproteases reveals an unexpected proteolytic link between meprinÂl² and ADAM10. Cellular and Molecular Life Sciences, 2013, 70, 309-333.	5.4	112
78	Tissue inhibitor of metalloproteinases-4 inhibits but does not support the activation of gelatinase A via efficient inhibition of membrane type 1-matrix metalloproteinase. Cancer Research, 2001, 61, 3610-8.	0.9	111
79	Protease degradomics: mass spectrometry discovery of protease substrates and the CLIP-CHIP, a dedicated DNA microarray of all human proteases and inhibitors. Biological Chemistry, 2004, 385, 493-504.	2.5	110
80	Cell surface chondroitin sulfate glycosaminoglycan in melanoma: role in the activation of pro-MMP-2 (pro-gelatinase A). Biochemical Journal, 2007, 403, 553-563.	3.7	109
81	Aging-associated modifications of collagen affect its degradation by matrix metalloproteinases. Matrix Biology, 2018, 65, 30-44.	3.6	109
82	A myoglobin variant with a polar substitution in a conserved hydrophobic cluster in the heme binding pocket. BBA - Proteins and Proteomics, 1997, 1341, 1-13.	2.1	108
83	Subcellular Distribution and Cytokine- and Chemokine-regulated Secretion of Leukolysin/MT6-MMP/MMP-25 in Neutrophils. Journal of Biological Chemistry, 2001, 276, 21960-21968.	3.4	108
84	The Hemopexin-like Domain (C Domain) of Human Gelatinase A (Matrix Metalloproteinase-2) Requires Ca2+ for Fibronectin and Heparin Binding. Journal of Biological Chemistry, 1997, 272, 7473-7481.	3.4	100
85	A Critical Role for the Membrane-type 1 Matrix Metalloproteinase in Collagen Phagocytosis. Molecular Biology of the Cell, 2006, 17, 4812-4826.	2.1	99
86	Systems-Level Analysis of Proteolytic Events in Increased Vascular Permeability and Complement Activation in Skin Inflammation. Science Signaling, 2013, 6, rs2.	3.6	99
87	Proteolytic processing of SDF-1Â reveals a change in receptor specificity mediating HIV-associated neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19182-19187.	7.1	97
88	Characterization of the prime and non-prime active site specificities of proteases by proteome-derived peptide libraries and tandem mass spectrometry. Nature Protocols, 2011, 6, 111-120.	12.0	97
89	Annotating N Termini for the Human Proteome Project: N Termini and Nα-Acetylation Status Differentiate Stable Cleaved Protein Species from Degradation Remnants in the Human Erythrocyte Proteome. Journal of Proteome Research, 2014, 13, 2028-2044.	3.7	95
90	Demonstration of tissue collagenase activity in vivo and its relationship to inflammation severity in human gingiva. Journal of Periodontal Research, 1987, 22, 81-88.	2.7	93

#	Article	IF	CITATIONS
91	Macrophage Matrix Metalloproteinase-12 Dampens Inflammation and Neutrophil Influx in Arthritis. Cell Reports, 2014, 9, 618-632.	6.4	93
92	Deciphering complex mechanisms in neurodegenerative diseases: the advent of systems biology. Trends in Neurosciences, 2009, 32, 88-100.	8.6	92
93	TopFIND, a knowledgebase linking protein termini with function. Nature Methods, 2011, 8, 703-704.	19.0	91
94	Biochemical Characterization and N-terminomics Analysis of Leukolysin, the Membrane-type 6 Matrix Metalloprotease (MMP25). Journal of Biological Chemistry, 2012, 287, 13382-13395.	3.4	90
95	Protein Termini and Their Modifications Revealed by Positional Proteomics. ACS Chemical Biology, 2015, 10, 1754-1764.	3.4	90
96	Matrix Metalloproteinase Processing of CXCL11/I-TAC Results in Loss of Chemoattractant Activity and Altered Glycosaminoglycan Binding. Journal of Biological Chemistry, 2008, 283, 19389-19399.	3.4	88
97	The Roles of Substrate Thermal Stability and P2 and P1′ Subsite Identity on Matrix Metalloproteinase Triple-helical Peptidase Activity and Collagen Specificity. Journal of Biological Chemistry, 2006, 281, 38302-38313.	3.4	87
98	Metalloprotease Meprin β Generates Nontoxic N-terminal Amyloid Precursor Protein Fragments in Vivo. Journal of Biological Chemistry, 2011, 286, 27741-27750.	3.4	87
99	Initial Characterization of a Neutral Metalloproteinase, Active on Native 3/4-Collagen Fragments, Synthesized by ROS 17/2.8 Osteoblastic Cells, Periodontal Fibroblasts, and Identified in Gingival Crevicular Fluid. Journal of Dental Research, 1987, 66, 1271-1282.	5.2	84
100	Transforming Growth Factor-β Regulation of Collagenase, 72Kda-Progelatinase, Timp and Pai-1 Expression in Rat Bone Cell Populations and Human Fibroblasts. Connective Tissue Research, 1989, 20, 289-294.	2.3	84
101	Assessment of a Novel Screening Test for Neutrophil Collagenase Activity in the Diagnosis of Periodontal Diseases. Journal of Periodontology, 1999, 70, 1292-1302.	3.4	84
102	Proteomic discovery of protease substrates. Current Opinion in Chemical Biology, 2007, 11, 36-45.	6.1	84
103	Protease proteomics: Revealing protease in vivo functions using systems biology approaches. Molecular Aspects of Medicine, 2008, 29, 339-358.	6.4	84
104	Domain Interactions in the Gelatinase A·TIMP-2·MT1-MMP Activation Complex. Journal of Biological Chemistry, 2000, 275, 39497-39506.	3.4	83
105	Stromal cellâ€derived factors 1α and 1β, inflammatory proteinâ€10 and interferonâ€inducible T cell chemoâ€attractant are novel substrates of dipeptidyl peptidase 8. FEBS Letters, 2008, 582, 819-825.	2.8	82
106	Stromal regulation of vessel stability by MMP14 and TGFβ. DMM Disease Models and Mechanisms, 2010, 3, 317-332.	2.4	82
107	Human Proteome Project Mass Spectrometry Data Interpretation Guidelines 3.0. Journal of Proteome Research, 2019, 18, 4108-4116.	3.7	82
108	Protein TAILS: when termini tell tales of proteolysis and function. Current Opinion in Chemical Biology, 2013, 17, 73-82.	6.1	80

CHRISTOPHER M OVERALL

#	Article	IF	CITATIONS
109	Cancer cell-associated fibronectin induces release of matrix metalloproteinase-2 from normal fibroblasts. Cancer Research, 2002, 62, 283-9.	0.9	80
110	Regulation of Tissue Inhibitor of Matrix Metalloproteinase Expression. Annals of the New York Academy of Sciences, 1994, 732, 51-64.	3.8	79
111	Novel Matrix Metalloproteinase Inhibitor [18F]Marimastat-Aryltrifluoroborate as a Probe for <i>In vivo</i> Positron Emission Tomography Imaging in Cancer. Cancer Research, 2010, 70, 7562-7569.	0.9	79
112	Ablation of Matrix Metalloproteinase-9 Increases Severity of Viral Myocarditis in Mice. Circulation, 2008, 117, 1574-1582.	1.6	77
113	A Novel Organ Culture Method to Study the Function of Human Odontoblasts in vitro: Gelatinase Expression by Odontoblasts is Differentially Regulated by TGF-β1. Journal of Dental Research, 1998, 77, 1486-1496.	5.2	76
114	The Involvement of the Fibronectin Type II-like Modules of Human Gelatinase A in Cell Surface Localization and Activation. Journal of Biological Chemistry, 1998, 273, 20622-20628.	3.4	76
115	Differential regulation of the 55 and 44 kDa forms of secreted phosphoprotein 1 (SPP-1, osteopontin) in normal and transformed rat bone cells by osteotropic hormones, growth factors and a tumor promoter. Bone and Mineral, 1991, 13, 235-250.	1.9	75
116	Discovery of noncanonical translation initiation sites through mass spectrometric analysis of protein N termini. Genome Research, 2018, 28, 25-36.	5.5	75
117	Identifying Natural Substrates for Dipeptidyl Peptidases 8 and 9 Using Terminal Amine Isotopic Labeling of Substrates (TAILS) Reveals in Vivo Roles in Cellular Homeostasis and Energy Metabolism. Journal of Biological Chemistry, 2013, 288, 13936-13949.	3.4	73
118	Metrics for the Human Proteome Project 2016: Progress on Identifying and Characterizing the Human Proteome, Including Post-Translational Modifications. Journal of Proteome Research, 2016, 15, 3951-3960.	3.7	72
119	Identification, regulation and role of tissue inhibitor of metalloproteinases-4 (TIMP-4) in human platelets. British Journal of Pharmacology, 2002, 137, 1330-1338.	5.4	71
120	Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Molecular Cell, 2020, 77, 927-929.	9.7	71
121	Identification of the Tissue Inhibitor of Metalloproteinases-2 (TIMP-2) Binding Site on the Hemopexin Carboxyl Domain of Human Gelatinase A by Site-directed Mutagenesis. Journal of Biological Chemistry, 1999, 274, 4421-4429.	3.4	69
122	A Statistics-based Platform for Quantitative N-terminome Analysis and Identification of Protease Cleavage Products. Molecular and Cellular Proteomics, 2010, 9, 912-927.	3.8	68
123	Cysteine Cathepsins Activate ELR Chemokines and Inactivate Non-ELR Chemokines. Journal of Biological Chemistry, 2015, 290, 13800-13811.	3.4	66
124	TAILS N-Terminomics and Proteomics Show Protein Degradation Dominates over Proteolytic Processing by Cathepsins in Pancreatic Tumors. Cell Reports, 2016, 16, 1762-1773.	6.4	66
125	Dissecting the Role of Matrix Metalloproteinases (MMP) and Integrin αvβ3 in Angiogenesis In vitro: Absence of Hemopexin C Domain Bioactivity, but Membrane-Type 1-MMP and αvI²3 Are Critical. Cancer Research, 2005, 65, 9377-9387.	0.9	65
126	Matrix metalloproteinase 8 deficiency in mice exacerbates inflammatory arthritis through delayed neutrophil apoptosis and reduced caspase 11 expression. Arthritis and Rheumatism, 2010, 62, 3645-3655.	6.7	64

#	Article	IF	CITATIONS
127	TIMP Independence of Matrix Metalloproteinase (MMP)-2 Activation by Membrane Type 2 (MT2)-MMP Is Determined by Contributions of Both the MT2-MMP Catalytic and Hemopexin C Domains. Journal of Biological Chemistry, 2006, 281, 26528-26539.	3.4	62
128	N-Terminomics TAILS Identifies Host Cell Substrates of Poliovirus and Coxsackievirus B3 3C Proteinases That Modulate Virus Infection. Journal of Virology, 2018, 92, .	3.4	61
129	Cortactin associates with N-cadherin adhesions and mediates intercellular adhesion strengthening in fibroblasts. Journal of Cell Science, 2004, 117, 5117-5131.	2.0	60
130	Collagenase-2 Deficiency or Inhibition Impairs Experimental Autoimmune Encephalomyelitis in Mice. Journal of Biological Chemistry, 2008, 283, 9465-9474.	3.4	60
131	Proteomic protease specificity profiling of clostridial collagenases reveals their intrinsic nature as dedicated degraders of collagen. Journal of Proteomics, 2014, 100, 102-114.	2.4	60
132	Mechanistic insights into COVID-19 by global analysis of the SARS-CoV-2 3CLpro substrate degradome. Cell Reports, 2021, 37, 109892.	6.4	60
133	Progress on Identifying and Characterizing the Human Proteome: 2018 Metrics from the HUPO Human Proteome Project. Journal of Proteome Research, 2018, 17, 4031-4041.	3.7	59
134	Biochemical Analysis of Matrix Metalloproteinase Activation of Chemokines CCL15 and CCL23 and Increased Glycosaminoglycan Binding of CCL16. Journal of Biological Chemistry, 2012, 287, 5848-5860.	3.4	58
135	Proteolysis of cystatin C by cathepsin D in the breast cancer microenvironment. FASEB Journal, 2012, 26, 5172-5181.	0.5	58
136	Collagenase activity in recurrent periodontitis: relationship to disease progression and doxycycline therapy. Journal of Periodontal Research, 1991, 26, 479-485.	2.7	57
137	Protease Yoga: Extreme Flexibility of a Matrix Metalloproteinase. Structure, 2007, 15, 1159-1161.	3.3	57
138	Novel N-terminal and Lysine Methyltransferases That Target Translation Elongation Factor 1A in Yeast and Human. Molecular and Cellular Proteomics, 2016, 15, 164-176.	3.8	57
139	A microtechnique for dialysis of small volume solutions with quantitative recoveries. Analytical Biochemistry, 1987, 165, 208-214.	2.4	56
140	Microarray and Proteomic Analysis of Breast Cancer Cell and Osteoblast Co-cultures. Journal of Biological Chemistry, 2011, 286, 34271-34285.	3.4	56
141	Progress on the HUPO Draft Human Proteome: 2017 Metrics of the Human Proteome Project. Journal of Proteome Research, 2017, 16, 4281-4287.	3.7	55
142	Factor Xa subsite mapping by proteome-derived peptide libraries improved using WebPICS, a resource for proteomic identification of cleavage sites. Biological Chemistry, 2011, 392, 1031-1037.	2.5	54
143	TopFIND 2.0linking protein termini with proteolytic processing and modifications altering protein function. Nucleic Acids Research, 2012, 40, D351-D361.	14.5	54
144	Granzyme B is elevated in autoimmune blistering diseases and cleaves key anchoring proteins of the dermal-epidermal junction. Scientific Reports, 2018, 8, 9690.	3.3	54

Christopher M Overall

#	Article	IF	CITATIONS
145	Evidence for polymorphonuclear leukocyte collagenase and 92-kilodalton gelatinase in gingival crevicular fluid. Infection and Immunity, 1991, 59, 4687-4692.	2.2	54
146	Cloning, mutagenesis, and structural analysis of human pancreatic αâ€amylase expressed in pichia pastoris. Protein Science, 1999, 8, 635-643.	7.6	53
147	TAILS N-terminomics of human platelets reveals pervasive metalloproteinase-dependent proteolytic processing in storage. Blood, 2014, 124, e49-e60.	1.4	53
148	Structural and mechanistic studies of chloride induced activation of human pancreatic Â-amylase. Protein Science, 2005, 14, 743-755.	7.6	51
149	Highly sensitive and adaptable fluorescence-quenched pair discloses the substrate specificity profiles in diverse protease families. Scientific Reports, 2017, 7, 43135.	3.3	51
150	Matrix metalloproteinase substrate binding domains, modules and exosites. Overview and experimental strategies. Methods in Molecular Biology, 2001, 151, 79-120.	0.9	51
151	Differentiation of Secreted and Membrane-Type Matrix Metalloproteinase Activities Based on Substitutions and Interruptions of Triple-Helical Sequencesâ€. Biochemistry, 2007, 46, 3724-3733.	2.5	50
152	C-terminal truncation of IFN-Î ³ inhibits proinflammatory macrophage responses and is deficient in autoimmune disease. Nature Communications, 2018, 9, 2416.	12.8	50
153	An allosteric MALT1 inhibitor is a molecular corrector rescuing function in an immunodeficient patient. Nature Chemical Biology, 2019, 15, 304-313.	8.0	50
154	Interactome disassembly during apoptosis occurs independent of caspase cleavage. Molecular Systems Biology, 2017, 13, 906.	7.2	49
155	Sharpening Host Defenses during Infection: Proteases Cut to the Chase. Molecular and Cellular Proteomics, 2017, 16, S161-S171.	3.8	49
156	Protean proteases: at the cutting edgeÂofÂlung diseases. European Respiratory Journal, 2017, 49, 1501200.	6.7	49
157	Structure of the Mycosin-1 Protease from the Mycobacterial ESX-1 Protein Type VII Secretion System. Journal of Biological Chemistry, 2013, 288, 17782-17790.	3.4	48
158	Function of Liver Activation-Regulated Chemokine/CC Chemokine Ligand 20 Is Differently Affected by Cathepsin B and Cathepsin D Processing. Journal of Immunology, 2006, 176, 6512-6522.	0.8	47
159	Broad Coverage Identification of Multiple Proteolytic Cleavage Site Sequences in Complex High Molecular Weight Proteins Using Quantitative Proteomics as a Complement to Edman Sequencing. Molecular and Cellular Proteomics, 2011, 10, M110.003533.	3.8	47
160	Cleavage Specificity Analysis of Six Type II Transmembrane Serine Proteases (TTSPs) Using PICS with Proteome-Derived Peptide Libraries. PLoS ONE, 2014, 9, e105984.	2.5	46
161	Mannose-binding Lectin (MBL) Mutants Are Susceptible to Matrix Metalloproteinase Proteolysis. Journal of Biological Chemistry, 2002, 277, 17511-17519.	3.4	45
162	Proteomic Validation of Protease Drug Targets: Pharmacoproteomics of Matrix Metalloproteinase Inhibitor Drugs Using Isotope-Coded Affinity Tag Labelling and Tandem Mass Spectrometry. Current Pharmaceutical Design, 2007, 13, 263-270.	1.9	45

Christopher M Overall

#	Article	IF	CITATIONS
163	N―and Câ€ŧerminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification. Physiologia Plantarum, 2012, 145, 5-17.	5.2	45
164	Heterogeneous Nuclear Ribonucleoprotein M Facilitates Enterovirus Infection. Journal of Virology, 2015, 89, 7064-7078.	3.4	45
165	The Collagen Binding Domain of Gelatinase A Modulates Degradation of Collagen IV by Gelatinase B. Journal of Molecular Biology, 2009, 386, 419-434.	4.2	44
166	Towards kit-like 18F-labeling of marimastat, a noncovalent inhibitor drug for in vivo PET imaging cancer associated matrix metalloproteases. MedChemComm, 2011, 2, 942.	3.4	44
167	The Canonical Methionine 392 of Matrix Metalloproteinase 2 (Gelatinase A) Is Not Required for Catalytic Efficiency or Structural Integrity. Journal of Biological Chemistry, 2004, 279, 15615-15620.	3.4	43
168	Biochemical comparison of fibroblast populations from different periodontal tissues: characterization of matrix protein and collagenolytic enzyme synthesis. Biochemistry and Cell Biology, 1988, 66, 167-176.	2.0	42
169	Pivotal Molecular Determinants of Peptidic and Collagen Triple Helicase Activities Reside in the S3′ Subsite of Matrix Metalloproteinase 8 (MMP-8). Journal of Biological Chemistry, 2005, 280, 2370-2377.	3.4	42
170	Protease research in the era of systems biology. Biological Chemistry, 2007, 388, 1159-1162.	2.5	42
171	Matrix metalloproteinase processing of signaling molecules to regulate inflammation. Periodontology 2000, 2013, 63, 123-148.	13.4	42
172	Positional proteomics in the era of the human proteome project on the doorstep of precision medicine. Biochimie, 2016, 122, 110-118.	2.6	42
173	The Human Dental Pulp Proteome and N-Terminome: Levering the Unexplored Potential of Semitryptic Peptides Enriched by TAILS to Identify Missing Proteins in the Human Proteome Project in Underexplored Tissues. Journal of Proteome Research, 2015, 14, 3568-3582.	3.7	41
174	Launching the C-HPP neXt-CP50 Pilot Project for Functional Characterization of Identified Proteins with No Known Function. Journal of Proteome Research, 2018, 17, 4042-4050.	3.7	41
175	Progress on Identifying and Characterizing the Human Proteome: 2019 Metrics from the HUPO Human Proteome Project. Journal of Proteome Research, 2019, 18, 4098-4107.	3.7	41
176	Proteomic Amino-Termini Profiling Reveals Targeting Information for Protein Import into Complex Plastids. PLoS ONE, 2013, 8, e74483.	2.5	41
177	Identification of matrix metalloendoproteinase inhibitor (TIMP) in human parotid and submandibular saliva: partial purification and characterization. Journal of Periodontal Research, 1988, 23, 370-377.	2.7	40
178	Identification of Proteolytic Products and Natural Protein N-Termini by Terminal Amine Isotopic Labeling of Substrates (TAILS). Methods in Molecular Biology, 2011, 753, 273-287.	0.9	40
179	CXCR3 activation by lentivirus infection suppresses neuronal autophagy: neuroprotective effects of antiretroviral therapy. FASEB Journal, 2009, 23, 2928-2941.	0.5	39
180	The path of no return—Truncated protein Nâ€ŧermini and current ignorance of their genesis. Proteomics, 2015, 15, 2547-2552.	2.2	39

#	Article	IF	CITATIONS
181	Research on the Human Proteome Reaches a Major Milestone: >90% of Predicted Human Proteins Now Credibly Detected, According to the HUPO Human Proteome Project. Journal of Proteome Research, 2020, 19, 4735-4746.	3.7	38
182	DIPPER, a spatiotemporal proteomics atlas of human intervertebral discs for exploring ageing and degeneration dynamics. ELife, 2020, 9, .	6.0	37
183	Dilating the degradome: matrix metalloproteinase 2 (MMP-2) cuts to the heart of the matter. Biochemical Journal, 2004, 383, e5-7.	3.7	36
184	Matrix metalloproteinases in the CNS: interferons get nervous. Cellular and Molecular Life Sciences, 2019, 76, 3083-3095.	5.4	36
185	Precision De Novo Peptide Sequencing Using Mirror Proteases of Ac-LysargiNase and Trypsin for Large-scale Proteomics. Molecular and Cellular Proteomics, 2019, 18, 773-785.	3.8	36
186	Site-specific O-Glycosylation by Polypeptide N-Acetylgalactosaminyltransferase 2 (GalNAc-transferase) Tj ETQq0 0 4714-4726.	0 rgBT /O 3.4	verlock 10 35
187	Discovery of a proteolytic flagellin family in diverse bacterial phyla that assembles enzymatically active flagella. Nature Communications, 2017, 8, 521.	12.8	35
188	Overview of transcriptomic analysis of all human proteases, non-proteolytic homologs and inhibitors: Organ, tissue and ovarian cancer cell line expression profiling of the human protease degradome by the CLIP-CHIPâ,,¢ DNA microarray. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 2210-2219.	4.1	34
189	CLIPPER: an add-on to the Trans-Proteomic Pipeline for the automated analysis of TAILS N-terminomics data. Biological Chemistry, 2012, 393, 1477-1483.	2.5	33
190	Family-wide characterization of matrix metalloproteinases from <i>Arabidopsis thaliana</i> reveals their distinct proteolytic activity and cleavage site specificity. Biochemical Journal, 2014, 457, 335-346.	3.7	33
191	Global Profiling of Proteolysis from the Mitochondrial Amino Terminome during Early Intrinsic Apoptosis Prior to Caspase-3 Activation. Journal of Proteome Research, 2018, 17, 4279-4296.	3.7	33
192	Matrix metalloproteinases in periodontal tissue remodelling. Matrix Supplement, 1992, 1, 352-62.	0.1	32
193	Utilization of a Novel Recombinant Myoglobin Fusion Protein Expression System to Characterize the Tissue Inhibitor of Metalloproteinase (TIMP)-4 and TIMP-2 C-terminal Domain and Tails by Mutagenesis. Journal of Biological Chemistry, 2002, 277, 48696-48707.	3.4	31
194	Src Stimulates Fibroblast Growth Factor Receptor-2 Shedding by an ADAM15 Splice Variant Linked to Breast Cancer. Cancer Research, 2009, 69, 4573-4576.	0.9	30
195	Membrane-type Matrix Metalloproteinase-3 Regulates Neuronal Responsiveness to Myelin through Nogo-66 Receptor 1 Cleavage. Journal of Biological Chemistry, 2011, 286, 31418-31424.	3.4	30
196	Traumatic brain injury induced matrix metalloproteinase2 cleaves CXCL12α (stromal cell derived factor) Tj ETQq0	0.0 rgBT / 4.1	Qverlock 1
197	Hydroxamic Acid Inhibitors Provide Cross-Species Inhibition of <i>Plasmodium</i> M1 and M17 Aminopeptidases. Journal of Medicinal Chemistry, 2019, 62, 622-640.	6.4	30

198Progress Identifying and Analyzing the Human Proteome: 2021ÂMetrics from the HUPO Human Proteome
Project. Journal of Proteome Research, 2021, 20, 5227-5240.3.7

#	Article	IF	CITATIONS
199	Degradomic and yeast 2-hybrid inactive catalytic domain substrate trapping identifies new membrane-type 1 matrix metalloproteinase (MMP14) substrates: CCN3 (Nov) and CCN5 (WISP2). Matrix Biology, 2017, 59, 23-38.	3.6	29
200	Ensembles of protein termini and specific proteolytic signatures as candidate biomarkers of disease. Proteomics - Clinical Applications, 2014, 8, 338-350.	1.6	28
201	Proteolytic control of TGF- $\hat{1}^2$ co-receptor activity by BMP-1/tolloid-like proteases revealed by quantitative iTRAQ proteomics. Cellular and Molecular Life Sciences, 2015, 72, 1009-1027.	5.4	27
202	A 9-kDa matricellular SPARC fragment released by cathepsin D exhibits pro-tumor activity in the triple-negative breast cancer microenvironment. Theranostics, 2021, 11, 6173-6192.	10.0	27
203	Absolute proteomic quantification of the activity state of proteases and proteolytic cleavages using proteolytic signature peptides and isobaric tags. Journal of Proteomics, 2014, 100, 79-91.	2.4	26
204	Expression of 72-kDa gelatinase (matrix metailloproteinase-2) in the developing mouse craniofacial complex. Archives of Oral Biology, 1996, 41, 1109-1119.	1.8	25
205	Regulation of Intercellular Adhesion Strength in Fibroblasts. Journal of Biological Chemistry, 2004, 279, 41047-41057.	3.4	25
206	Cleaved high molecular weight kininogen inhibits tube formation of endothelial progenitor cells via suppression of matrix metalloproteinase 2. Journal of Thrombosis and Haemostasis, 2010, 8, 185-193.	3.8	25
207	Advances in the Chromosome-Centric Human Proteome Project: looking to the future. Expert Review of Proteomics, 2017, 14, 1059-1071.	3.0	25
208	TAILS N-terminomics and proteomics reveal complex regulation of proteolytic cleavage by O-glycosylation. Journal of Biological Chemistry, 2018, 293, 7629-7644.	3.4	25
209	Protease Specificity Profiling by Tandem Mass Spectrometry Using Proteome-Derived Peptide Libraries. Methods in Molecular Biology, 2011, 753, 257-272.	0.9	24
210	Snake venom serine proteinases specificity mapping by proteomic identification of cleavage sites. Journal of Proteomics, 2015, 113, 260-267.	2.4	23
211	Identification and Relative Quantification of Native and Proteolytically Generated Protein C-Termini from Complex Proteomes: C-Terminome Analysis. Methods in Molecular Biology, 2011, 781, 59-69.	0.9	23
212	In Situ Extension as an Approach for Identifying Novel α-Amylase Inhibitors. Journal of Biological Chemistry, 2004, 279, 48282-48291.	3.4	22
213	Toward Completion of the Human Proteome Parts List: Progress Uncovering Proteins That Are Missing or Have Unknown Function and Developing Analytical Methods. Journal of Proteome Research, 2018, 17, 4023-4030.	3.7	22
214	Mechanistic understanding of the combined immunodeficiency in complete human CARD11 deficiency. Journal of Allergy and Clinical Immunology, 2021, 148, 1559-1574.e13.	2.9	22
215	Site Specific Cleavage Mediated by MMPs Regulates Function of Agrin. PLoS ONE, 2012, 7, e43669.	2.5	22
216	Induction of formative and resorptive cellular phenotypes in human gingival fibroblasts by TGF-beta and concanavalin A: Regulation of matrix metalloproteinases and TIMP. Journal of Periodontal Research, 1991, 26, 279-282.	2.7	21

#	Article	IF	CITATIONS
217	Active site specificity profiling datasets of matrix metalloproteinases (MMPs) 1, 2, 3, 7, 8, 9, 12, 13 and 14. Data in Brief, 2016, 7, 299-310.	1.0	21
218	Opposite Electron-Transfer Dissociation and Higher-Energy Collisional Dissociation Fragmentation Characteristics of Proteolytic K/R(X) _{<i>n</i>} and (X) <i>_n</i> K/R Peptides Provide Benefits for Peptide Sequencing in Proteomics and Phosphoproteomics. Journal of Proteome Research, 2017, 16, 852-861.	3.7	21
219	Proteomic and N-Terminomic TAILS Analyses of Human Alveolar Bone Proteins: Improved Protein Extraction Methodology and LysargiNase Digestion Strategies Increase Proteome Coverage and Missing Protein Identification. Journal of Proteome Research, 2019, 18, 4167-4179.	3.7	21
220	TAILS proteomics reveals dynamic changes in airway proteolysis controlling protease activity and innate immunity during COPD exacerbations. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L1003-L1014.	2.9	20
221	Matrix metalloproteinases inactivate the proinflammatory functions of secreted moonlighting tryptophanyl-tRNA synthetase. Journal of Biological Chemistry, 2019, 294, 12866-12879.	3.4	20
222	Measurements of probing velocity with an automated periodontal probe and the relationship with experimental periodontitis in the cynomolgus monkey (Macaca fascicularis). Archives of Oral Biology, 1989, 34, 793-801.	1.8	19
223	Chemokine Monocyte Chemoattractant Protein-3 in Progressive Periodontal Lesions in Patients With Chronic Periodontitis. Journal of Periodontology, 2010, 81, 267-276.	3.4	19
224	Repression of tissue inhibitor of matrix metalloproteinase expression by all-trans-retinoic acid in rat bone cell populations: Comparison with transforming growth factor-?T1. Journal of Cellular Physiology, 1995, 164, 17-25.	4.1	18
225	RC1339/APRc from Rickettsia conorii Is a Novel Aspartic Protease with Properties of Retropepsin-Like Enzymes. PLoS Pathogens, 2014, 10, e1004324.	4.7	17
226	Progress in the Chromosome-Centric Human Proteome Project as Highlighted in the Annual Special Issue IV. Journal of Proteome Research, 2016, 15, 3945-3950.	3.7	17
227	Melanocyte development in the mouse tail epidermis requires the Adamts9 metalloproteinase. Pigment Cell and Melanoma Research, 2018, 31, 693-707.	3.3	17
228	Novel Human Aminopeptidase N Inhibitors: Discovery and Optimization of Subsite Binding Interactions. Journal of Medicinal Chemistry, 2019, 62, 7185-7209.	6.4	17
229	Moonlighting matrix metalloproteinase substrates: Enhancement of proinflammatory functions of extracellular tyrosyl-tRNA synthetase upon cleavage. Journal of Biological Chemistry, 2020, 295, 2186-2202.	3.4	17
230	Cell-Based Identification of Natural Substrates and Cleavage Sites for Extracellular Proteases by SILAC Proteomics. Methods in Molecular Biology, 2009, 539, 131-153.	0.9	17
231	Membrane Protease Degradomics: Proteomic Identification and Quantification of Cell Surface Protease Substrates. Methods in Molecular Biology, 2009, 528, 159-176.	0.9	16
232	Amino-Terminal Oriented Mass Spectrometry of Substrates (ATOMS). Methods in Enzymology, 2011, 501, 275-293.	1.0	16
233	Recent Advances in the Chromosome-Centric Human Proteome Project: Missing Proteins in the Spot Light. Journal of Proteome Research, 2015, 14, 3409-3414.	3.7	16
234	Protease-Inhibitor Interaction Predictions: Lessons on the Complexity of Protein–Protein Interactions. Molecular and Cellular Proteomics, 2017, 16, 1038-1051.	3.8	16

#	Article	IF	CITATIONS
235	Deep Profiling of the Cleavage Specificity and Human Substrates of Snake Venom Metalloprotease HF3 by Proteomic Identification of Cleavage Site Specificity (PICS) Using Proteome Derived Peptide Libraries and Terminal Amine Isotopic Labeling of Substrates (TAILS) N-Terminomics. Journal of Proteome Research, 2019, 18, 3419-3428.	3.7	15
236	iRhom2 regulates CSF1R cell surface expression and nonâ€steady state myelopoiesis in mice. European Journal of Immunology, 2016, 46, 2737-2748.	2.9	14
237	Progress and Future Direction of Chromosome-Centric Human Proteome Project. Journal of Proteome Research, 2017, 16, 4253-4258.	3.7	14
238	Persistent Salmonella enterica Serovar Typhimurium Infection Induces Protease Expression During Intestinal Fibrosis. Inflammatory Bowel Diseases, 2019, 25, 1629-1643.	1.9	14
239	Intracellular Localization in Zebrafish Muscle and Conserved Sequence Features Suggest Roles for Gelatinase A Moonlighting in Sarcomere Maintenance. Biomedicines, 2019, 7, 93.	3.2	14
240	Chapter 13 Characterizing Proteolytic Processing of Chemokines by Mass Spectrometry, Biochemistry, Neoâ€Epitope Antibodies and Functional Assays. Methods in Enzymology, 2009, 461, 281-307.	1.0	12
241	Analysis of the Degradome with the CLIP-CHIPâ"¢ Microarray. Methods in Molecular Biology, 2010, 622, 175-193.	0.9	12
242	Monocyte chemotactic proteinâ€3: possible involvement in apical periodontitis chemotaxis. International Endodontic Journal, 2010, 43, 902-908.	5.0	11
243	Novel grooved substrata stimulate macrophage fusion, CCL2 and MMPâ€9 secretion. Journal of Biomedical Materials Research - Part A, 2016, 104, 2243-2254.	4.0	11
244	The Human Odontoblast Cell Layer and Dental Pulp Proteomes and N-Terminomes. Journal of Dental Research, 2018, 97, 338-346.	5.2	11
245	MMP8 increases tongue carcinoma cell–cell adhesion and diminishes migration via cleavage of anti-adhesive FXYD5. Oncogenesis, 2021, 10, 44.	4.9	11
246	Cytokine Substrates: MMP Regulation of Inflammatory Signaling Molecules. , 2008, , 519-539.		10
247	Identification of the TIMP-2 Binding Site on the Gelatinase A Hemopexin C-Domain by Site-Directed Mutagenesis and the Yeast Two-Hybrid System. Annals of the New York Academy of Sciences, 1999, 878, 747-753.	3.8	9
248	Development of Soluble Ester-Linked Aldehyde Polymers for Proteomics. Analytical Chemistry, 2011, 83, 6500-6510.	6.5	9
249	TAILS N-terminomic and proteomic datasets of healthy human dental pulp. Data in Brief, 2015, 5, 542-548.	1.0	9
250	MALT1-Dependent Cleavage of HOIL1 Modulates Canonical NF-κB Signaling and Inflammatory Responsiveness. Frontiers in Immunology, 2021, 12, 749794.	4.8	9
251	Use of a Fluorogenic Septapeptide Matrix Metalloproteinase Assay to Assess Responses to Periodontal Treatment. Journal of Periodontology, 2000, 71, 690-700.	3.4	8
252	Bone sialoprotein does not interact with pro-gelatinase A (MMP-2) or mediate MMP-2 activation. BMC Cancer, 2009, 9, 121.	2.6	8

#	Article	IF	CITATIONS
253	The Human Proteome Organization Chromosome 6 Consortium: Integrating chromosome-centric and biology/disease driven strategies. Journal of Proteomics, 2014, 100, 60-67.	2.4	8
254	Quantitative proteomics and terminomics to elucidate the role of ubiquitination and proteolysis in adaptive immunity. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150372.	3.4	8
255	Enzymatically releasable polyethylene glycol – host defense peptide conjugates with improved activity and biocompatibility. Journal of Controlled Release, 2021, 339, 220-231.	9.9	8
256	Uncovering a Dual Regulatory Role for Caspases During Endoplasmic Reticulum Stress-induced Cell Death. Molecular and Cellular Proteomics, 2016, 15, 2293-2307.	3.8	7
257	Celatinase A in Human Dentin as a New Biochemical Marker for Age Estimation. Journal of Forensic Sciences, 2000, 45, 807-811.	1.6	7
258	Can proteomics fill the gap between genomics and phenotypes?. Journal of Proteomics, 2014, 100, 1-2.	2.4	6
259	The Human Proteome: 90% in the Light, 10% on the Dark Side. Journal of Proteome Research, 2020, 19, 4731-4734.	3.7	6
260	Kallikrein-Related Peptidase 14 Activates Zymogens of Membrane Type Matrix Metalloproteinases (MT-MMPs)—A CleavEx Based Analysis. International Journal of Molecular Sciences, 2020, 21, 4383.	4.1	5
261	Simplified high yield TAILS terminomics using a new HPG-ALD 800K-2000 polymer with precipitation. Methods in Enzymology, 2019, 626, 429-446.	1.0	4
262	Advances in Identifying and Characterizing the Human Proteome. Journal of Proteome Research, 2019, 18, 4079-4084.	3.7	4
263	Neutrophil elastase-cleaved corticosteroid-binding globulin is absent in human plasma. Journal of Endocrinology, 2019, 240, 27-39.	2.6	4
264	Quantitation and optimization of enzymatic and mechanical procedures to produce high-yield single cell suspensions from human gingiva. Journal of Periodontal Research, 1987, 22, 41-49.	2.7	3
265	Identification of Protease Cleavage Sites and Substrates in Cancer by Carboxy-TAILS (C-TAILS). Methods in Molecular Biology, 2018, 1731, 15-28.	0.9	3
266	The HUPO High-Stringency Inventory of Humanity's Shared Human Proteome Revealed. Journal of Proteome Research, 2020, 19, 4211-4214.	3.7	3
267	Master Sculptor at Work: Enteropathogenic Escherichia coli Infection Uniquely Modifies Mitochondrial Proteolysis during Its Control of Human Cell Death. MSystems, 2020, 5, .	3.8	3
268	Reciprocal regulation of collagenase, 72 kDa-gelatinase, and TIMP gene expression and protein synthesis in human fibroblasts induced by concanavalin A. Matrix Supplement, 1992, 1, 209-11.	0.1	3
269	Highlight: Frontiers in Proteolysis. Biological Chemistry, 2018, 399, 1351-1351.	2.5	2
270	Proteases and their inhibitors as prognostic factors for high-grade serous ovarian cancer. Pathology Research and Practice, 2019, 215, 152369.	2.3	2

#	Article	IF	CITATIONS
271	Chemokine Proteolytic Processing in HIV Infection: Neurotoxic and Neuroimmune Consequences. , 2010, , 149-172.		1
272	Hydrolases (version 2019.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	1
273	Corrigendum to "Stromal cell-derived factors 1α and 1β, inflammatory protein-10 and interferon-inducible T cell chemo-attractant are novel substrates of dipeptidyl peptidase 8―[FEBS Lett. 582 (2008) 819-825]. FEBS Letters, 2008, 582, 1168-1168.	2.8	0
274	4.7 Rock, paper, and molecular scissors: regulating the game of extracellular matrix homeostasis, remodeling, and inflammation. , 2012, , 377-400.		0
275	Hydrolases (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	0
276	A Flickering Light at the End of the Pandemic Tunnel. Journal of Proteome Research, 2021, 20, 5223-5226.	3.7	0