Olivier Berteau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4040129/publications.pdf

Version: 2024-02-01

159585 223800 3,258 47 30 46 citations h-index g-index papers 50 50 50 3710 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Crystallographic snapshots of a B12-dependent radical SAM methyltransferase. Nature, 2022, 602, 336-342.	27.8	28
2	Exploring the Biosynthetic Potential of TsrM, a B ₁₂ â€dependent Radical SAM Methyltransferase Catalyzing Nonâ€radical Reactions. Chemistry - A European Journal, 2022, 28, .	3.3	7
3	The Epipeptide Biosynthesis Locus <i>epeXEPAB</i> Is Widely Distributed in <i>Firmicutes</i> and Triggers Intrinsic Cell Envelope Stress. Microbial Physiology, 2021, 31, 306-318.	2.4	13
4	Radical SAM Enzymes and Ribosomallyâ€Synthesized and Postâ€translationally Modified Peptides: A Growing Importance in the Microbiomes. Frontiers in Chemistry, 2021, 9, 678068.	3.6	16
5	Biosynthesis of the sactipeptide Ruminococcin C by the human microbiome: Mechanistic insights into thioether bond formation by radical SAM enzymes. Journal of Biological Chemistry, 2020, 295, 16665-16677.	3.4	18
6	Gold-Catalyzed Spirocyclization Reactions of <i>N</i> -Propargyl Tryptamines and Tryptophans in Aqueous Media. Organic Letters, 2020, 22, 4344-4349.	4.6	26
7	The Epipeptide YydF Intrinsically Triggers the Cell Envelope Stress Response of Bacillus subtilis and Causes Severe Membrane Perturbations. Frontiers in Microbiology, 2020, 11, 151.	3.5	29
8	Ruminococcin C, an anti-clostridial sactipeptide produced by a prominent member of the human microbiota Ruminococcus gnavus. Journal of Biological Chemistry, 2019, 294, 14512-14525.	3.4	46
9	Mechanistic Investigations of PoyD, a Radical <i>S</i> -Adenosyl- <scp> </scp> -methionine Enzyme Catalyzing Iterative and Directional Epimerizations in Polytheonamide A Biosynthesis. Journal of the American Chemical Society, 2018, 140, 2469-2477.	13.7	48
10	A missed Fe-S cluster handoff causes a metabolic shakeup. Journal of Biological Chemistry, 2018, 293, 8312-8313.	3.4	5
11	DNA Repair by the Radical SAM Enzyme Spore Photoproduct Lyase: From Biochemistry to Structural Investigations. Photochemistry and Photobiology, 2017, 93, 67-77.	2.5	15
12	Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis. Nature Chemistry, 2017, 9, 698-707.	13.6	88
13	Insights into the catalysis of a lysine-tryptophan bond in bacterial peptides by a SPASM domain radical S-adenosylmethionine (SAM) peptide cyclase. Journal of Biological Chemistry, 2017, 292, 10835-10844.	3.4	19
14	Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs). Frontiers in Chemistry, 2017, 5, 87.	3.6	77
15	Functional Characterization of Novel Faecalibacterium prausnitzii Strains Isolated from Healthy Volunteers: A Step Forward in the Use of F. prausnitzii as a Next-Generation Probiotic. Frontiers in Microbiology, 2017, 8, 1226.	3 . 5	320
16	The B ₁₂ -Radical SAM Enzyme PoyC Catalyzes Valine C _β -Methylation during Polytheonamide Biosynthesis. Journal of the American Chemical Society, 2016, 138, 15515-15518.	13.7	81
17	Carbon–sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE. Nature Chemistry, 2016, 8, 491-500.	13.6	72
18	Thioether bond formation by SPASM domain radical SAM enzymes: $C < sub > \hat{l} \pm < / sub > H$ -atom abstraction in subtilosin A biosynthesis. Chemical Communications, 2016, 52, 6249-6252.	4.1	50

#	Article	IF	CITATIONS
19	Sulfatases and radical SAM enzymes: emerging themes in glycosaminoglycan metabolism and the human microbiota. Biochemical Society Transactions, 2016, 44, 109-115.	3.4	31
20	Chondroitinase AC: A host-associated genetic feature of Helicobacter bizzozeronii. Veterinary Microbiology, 2016, 186, 21-27.	1.9	4
21	Biosynthetic Versatility and Coordinated Action of 5′-Deoxyadenosyl Radicals in Deazaflavin Biosynthesis. Journal of the American Chemical Society, 2015, 137, 5406-5413.	13.7	40
22	The thiostrepton A tryptophan methyltransferase TsrM catalyses a cob(II)alamin-dependent methyl transfer reaction. Nature Communications, 2015, 6, 8377.	12.8	57
23	Radically New Methylation Reactions in Antibiotic Biosynthesis: Insights into the Mechanism of B 12 â€dependent Radical SAM enzymes FASEB Journal, 2015, 29, 573.39.	0.5	0
24	Characterization of Glycosaminoglycan (GAG) Sulfatases from the Human Gut Symbiont Bacteroides thetaiotaomicron Reveals the First GAG-specific Bacterial Endosulfatase. Journal of Biological Chemistry, 2014, 289, 24289-24303.	3.4	90
25	Biosynthesis of F ₀ , Precursor of the F ₄₂₀ Cofactor, Requires a Unique Two Radical-SAM Domain Enzyme and Tyrosine as Substrate. Journal of the American Chemical Society, 2012, 134, 18173-18176.	13.7	66
26	Thiostrepton tryptophan methyltransferase expands the chemistry of radical SAM enzymes. Nature Chemical Biology, 2012, 8, 957-959.	8.0	105
27	Chondroitin-4-O-sulfatase from Bacteroides thetaiotaomicron: exploration of the substrate specificity. Carbohydrate Research, 2012, 353, 96-99.	2.3	8
28	Sulfatases and a Radical S-Adenosyl-l-methionine (AdoMet) Enzyme Are Key for Mucosal Foraging and Fitness of the Prominent Human Gut Symbiont, Bacteroides thetaiotaomicron. Journal of Biological Chemistry, 2011, 286, 25973-25982.	3.4	134
29	A metagenomic \hat{l}^2 -glucuronidase uncovers a core adaptive function of the human intestinal microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4539-4546.	7.1	173
30	Anaerobic sulfataseâ€maturating enzyme – A mechanistic link with glycyl radicalâ€activating enzymes?. FEBS Journal, 2010, 277, 1906-1920.	4.7	55
31	An efficient, multiply promiscuous hydrolase in the alkaline phosphatase superfamily. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2740-2745.	7.1	87
32	Mechanistic Investigations of Anaerobic Sulfatase-Maturating Enzyme: Direct C $<$ sub $>$ Î $^2<$ /sub $>$ H-Atom Abstraction Catalyzed by a Radical AdoMet Enzyme. Journal of the American Chemical Society, 2009, 131, 8348-8349.	13.7	39
33	DNA Repair and Free Radicals, New Insights into the Mechanism of Spore Photoproduct Lyase Revealed by Single Amino Acid Substitution. Journal of Biological Chemistry, 2008, 283, 36361-36368.	3.4	62
34	Anaerobic Sulfatase-maturating Enzymes, First Dual Substrate Radical S-Adenosylmethionine Enzymes. Journal of Biological Chemistry, 2008, 283, 17815-17826.	3.4	64
35	First evidences for a third sulfatase maturation system in prokaryotes fromE. coli aslBandydeMdeletion mutants. FEBS Letters, 2007, 581, 1009-1014.	2.8	43
36	Anaerobic Sulfatase-Maturating Enzymes:Â Radical SAM Enzymes Able To Catalyze in Vitro Sulfatase Post-translational Modification. Journal of the American Chemical Society, 2007, 129, 3462-3463.	13.7	61

#	Article	IF	CITATIONS
37	A New Type of Bacterial Sulfatase Reveals a Novel Maturation Pathway in Prokaryotes. Journal of Biological Chemistry, 2006, 281, 22464-22470.	3.4	108
38	The spore photoproduct lyase repairs the 5S- and not the 5R-configured spore photoproduct DNA lesion. Chemical Communications, 2006, , 445-447.	4.1	39
39	Dinucleotide Spore Photoproduct, a Minimal Substrate of the DNA Repair Spore Photoproduct Lyase Enzyme from Bacillus subtilis. Journal of Biological Chemistry, 2006, 281, 26922-26931.	3.4	51
40	Web resources for the carbohydrate chemist. Carbohydrate Research, 2004, 339, 929-936.	2.3	26
41	Atomic Mapping of the Interactions between the Antiviral Agent Cyanovirin-N and Oligomannosides by Saturation-Transfer Difference NMRâ€. Biochemistry, 2004, 43, 13926-13931.	2.5	44
42	\hat{l}_{\pm} -l-Fucosidases: Exoglycosidases with Unusual Transglycosylation Properties. Biochemistry, 2004, 43, 7881-7891.	2.5	27
43	Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology, 2003, 13, 29R-40.	2.5	659
44	Glycosidaseâ^Substrate Interactions Analysis by STD-NMR Spectroscopy:  Study of α-l-Fucosidase. Journal of the American Chemical Society, 2003, 125, 15296-15297.	13.7	15
45	Characterization of a new Â-L-fucosidase isolated from the marine mollusk Pecten maximus that catalyzes the hydrolysis of Â-L-fucose from algal fucoidan (Ascophyllum nodosum). Glycobiology, 2002, 12, 273-282.	2.5	75
46	Regioselective desulfation of sulfated I -fucopyranoside by a new sulfoesterase from the marine mollusk Pecten maximus FEBS Journal, 2001, 268, 5617-5626.	0.2	58
47	Degradation of algal (Ascophyllum nodosum) fucoidan by an enzymatic activity contained in digestive glands of the marine mollusc Pecten maximus. Carbohydrate Research, 1999, 322, 291-297.	2.3	79