
Kosuke Sugawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4040099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and Function Improvement of Gold Nanorods, Silver Nanoprisms, and Chiral Nanoparticles for Bioapplications. , 2022, , 397-466.		0
2	Dye fluorescence enhancement by plasmonic nanostructured gold–titania film composites obtained by the combination of electrodeposition and surface sol-gel process. Journal of Sol-Gel Science and Technology, 2022, 104, 666-672.	2.4	2
3	Modulation Technique of Localized Surface Plasmon Resonance of Palladium Nanospheres by Coating with Titanium Dioxide Shell for Application to Photothermal Therapy Agent. Nanoscale Research Letters, 2022, 17, .	5.7	1
4	A Lightâ€Harvesting/Chargeâ€Separation Model with Energy Gradient Made of Assemblies of <i>meta</i> â€Pyridyl Zinc Porphyrins. Chemistry - A European Journal, 2021, 27, 4053-4063.	3.3	1
5	Spontaneous reaction and self-assembly of copper nitrate and cyclic 1,3-dione dioximes into multicopper complexes. Journal of the Indian Chemical Society, 2021, 98, 100110.	2.8	1
6	Performance Improvement of Triplet–Triplet Annihilation-Based Upconversion Solid Films through Plasmon-Induced Backward Scattering of Periodic Arrays of Ag and Al. Langmuir, 2021, 37, 11508-11519.	3.5	7
7	Plasmonic triangular nanoprism sensors. Materials Advances, 2021, 2, 32-46.	5.4	14
8	Fabrication and photocatalytic behavior of titanium oxide–gold nanoparticles composite ultrathin films prepared using surface sol–gel process. Journal of Sol-Gel Science and Technology, 2020, 93, 563-569.	2.4	5
9	Fabrication and surface-enhanced Raman scattering properties of two-dimensional gold and silver nanoparticle mixed assemblies by liquid–liquid interfacial precipitation method. Applied Physics Express, 2020, 13, 055001.	2.4	3
10	Upconverted emission-driven photothermal conversion with gold nanospheres based on triplet–triplet annihilation. Physical Chemistry Chemical Physics, 2020, 22, 18257-18260.	2.8	1
11	Synthesis of Ag Nanoprisms with Precisely-tuned Localized Surface Plasmon Wavelengths by Sequential Irradiation of Light of Two Different Wavelengths. Chemistry Letters, 2020, 49, 240-243.	1.3	9
12	Anthradithiophene based hole-transport material for efficient and stable perovskite solar cells. Journal of Energy Chemistry, 2020, 48, 293-298.	12.9	16
13	Facile synthesis of "lucky clover―hole-transport material for efficient and stable large-area perovskite solar cells. Journal of Power Sources, 2020, 454, 227938.	7.8	11
14	Triphenylamine-based hole transporting materials with thiophene-derived bridges for perovskite solar cells. Synthetic Metals, 2020, 261, 116323.	3.9	10
15	Combined Use of Anisotropic Silver Nanoprisms with Different Aspect Ratios for Multi-Mode Plasmon-Exciton Coupling. Nanoscale Research Letters, 2020, 15, 15.	5.7	3
16	Perovskite Solar Cells Using Surfaceâ€Modified NiO _{<i>x</i>} Nanoparticles as Hole Transport Materials in nâ€iâ€p Configuration. Solar Rrl, 2019, 3, 1900172.	5.8	32
17	Plasmonic Silver Nanoprism-Induced Emissive Mode Control between Fluorescence and Phosphorescence of a Phosphorescent Palladium Porphyrin Derivative. ACS Nano, 2019, 13, 13244-13256.	14.6	16
18	Electro-active nanofibers of a tetrathiafulvalene derivative with amide hydrogen bonds as a dopant-free hole transport material for perovskite solar cells. Solar Energy, 2019, 194, 248-253.	6.1	17

#	Article	IF	CITATIONS
19	Mie Resonance-Enhanced Light Absorption of FeS ₂ Nanocubes in a Near-Infrared Region: Intraparticulate Synergy between Electronic Absorption and Mie Resonances. ACS Applied Energy Materials, 2019, 2, 6472-6483.	5.1	9
20	Cobalt-doped nickel oxide nanoparticles as efficient hole transport materials for low-temperature processed perovskite solar cells. Solar Energy, 2019, 181, 243-250.	6.1	37
21	(Invited) Enhancement of Triplet-Triplet Annihilation-Based Upconversion Emission By Localized Surface Plasmon Resonance. ECS Meeting Abstracts, 2019, , .	0.0	0
22	Hybrids of Two-dimensional Colloidal Crystals and Gold Nanoparticle Assemblies for Effective Surface-enhanced Raman Scattering with High Spatial Reproducibility. Chemistry Letters, 2018, 47, 429-432.	1.3	4
23	One-pot synthesis of monodisperse CoFe2O4@Ag core-shell nanoparticles and their characterization. Nanoscale Research Letters, 2018, 13, 176.	5.7	15
24	Precise Control of Localized Surface Plasmon Wavelengths Is Needed for Effective Enhancement of Triplet–Triplet Annihilation-Based Upconversion Emission. ACS Photonics, 2018, 5, 5025-5037.	6.6	20
25	Naphthalimide-Based Fluorescent Dyes: Impact of Extension of ï€-Conjugation and Introduction of an Electron-Donating Moiety on the Photophysical Properties. Bulletin of the Chemical Society of Japan, 2018, 91, 1506-1514.	3.2	1
26	Effect of different auxiliary ligands and anchoring ligands on neutral thiocyanate-free ruthenium(II) dyes bearing tetrazole chromophores for dye-sensitized solar cells. Dyes and Pigments, 2017, 140, 354-362.	3.7	13
27	Spontaneous ligand nitrosation and self-assembly into a pentacopper metallacrown complex. Dalton Transactions, 2017, 46, 2760-2764.	3.3	5
28	Cyclometalated ruthenium complexes with 6-(ortho-methoxyphenyl)-2,2′-bipyridine as panchromatic dyes for dye-sensitized solar cells. Journal of Organometallic Chemistry, 2017, 833, 61-70.	1.8	9
29	Twoâ€Dimensional Arrays of Au Halfshells with Different Sizes for Plasmonâ€Induced Charge Separation. ChemistrySelect, 2017, 2, 3744-3749.	1.5	6
30	Development of Plasmonic Cu ₂ O/Cu Composite Arrays as Visible- and Near-Infrared-Light-Driven Plasmonic Photocatalysts. Langmuir, 2017, 33, 5685-5695.	3.5	40
31	Efficient Photocurrent Enhancement from Porphyrin Molecules on Plasmonic Copper Arrays: Beneficial Utilization of Copper Nanoanntenae on Plasmonic Photoelectric Conversion Systems. ACS Applied Materials & Interfaces, 2017, 9, 750-762.	8.0	18
32	Prostaglandin E2 facilitates neurite outgrowth in a motor neuron-like cell line, NSC-34. Journal of Pharmacological Sciences, 2017, 135, 64-71.	2.5	22
33	Hole-Transport Materials Containing Triphenylamine Donors with a Spiro[fluorene-9,9′-xanthene] Core for Efficient and Stable Large Area Perovskite Solar Cells (Solar RRL 9â^•2017). Solar Rrl, 2017, 1, 1770134.	5.8	3
34	A 2,1,3-Benzooxadiazole Moiety in a D–A–D-type Hole-Transporting Material for Boosting the Photovoltage in Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 17617-17624.	3.1	40
35	Hole-Transport Materials Containing Triphenylamine Donors with a Spiro[fluorene-9,9′-xanthene] Core for Efficient and Stable Large Area Perovskite Solar Cells. Solar Rrl, 2017, 1, 1700096.	5.8	19
36	Enhancement of Raman scattering from single-walled carbon nanotubes on densely-arranged two-dimensional gold nanoparticle assemblies. Molecular Crystals and Liquid Crystals, 2017, 654, 151-156.	0.9	0

#	Article	IF	CITATIONS
37	Surface-enhanced Raman scattering properties of Ag nanostructures fabricated by galvanic reaction using nanostructured Al thin films. Molecular Crystals and Liquid Crystals, 2017, 654, 146-150.	0.9	1
38	I-V Characteristics of NiO Nanowire Based Resistive Change Memory. ECS Meeting Abstracts, 2017, , .	0.0	0
39	Refractive index susceptibility of palladium nanoplates with plasmonic resonance in the visible region. Optical Materials Express, 2016, 6, 859.	3.0	5
40	Extraordinary enhancement of porphyrin photocurrent utilizing plasmonic silver arrays. Nanoscale, 2016, 8, 15467-15472.	5.6	8
41	Cyclic Tetramers of Zinc Chlorophylls as a Coupled Lightâ€Harvesting Antenna–Chargeâ€Separation System. Chemistry - A European Journal, 2016, 22, 1165-1176.	3.3	15
42	Fabrication and optical property of metal nanowire arrays embedded in anodic porous alumina membrane. Japanese Journal of Applied Physics, 2016, 55, 06GH09.	1.5	1
43	Thiocyanate-free asymmetric ruthenium(II) dye sensitizers containing azole chromophores with near-IR light-harvesting capacity. Journal of Power Sources, 2016, 331, 100-111.	7.8	16
44	Crystal Structures and Side-arm Dynamics of Cerium <i>meso</i> -Tetrathienylporphyrin Double-decker Complexes. Chemistry Letters, 2016, 45, 1123-1125.	1.3	1
45	Neutral and anionic tetrazole-based ligands in designing novel ruthenium dyes for dye-sensitized solar cells. Journal of Power Sources, 2016, 307, 416-425.	7.8	27
46	Construction of dendrimers with a square-shaped core consisting of zinc chlorophyll assembly via intermolecular nitrogen–zinc coordination. Tetrahedron Letters, 2016, 57, 48-52.	1.4	10
47	Structural, mechanical, and electrical properties of carbon nanoparticles synthesized from diesel. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 43-51.	2.1	8
48	Enhancement of Porphyrin Photocurrent Based on Plasmonic Cu Light-Harvesting Nanoantenna. ECS Meeting Abstracts, 2016, , .	0.0	0
49	Fluorescence Enhancement and Quenching Properties of Dyes Positioned on Plasmonic Copper Arrays: Comparision with Those on Plasmonic Gold Arrays. ECS Meeting Abstracts, 2016, , .	0.0	0
50	Synthesis and Evaluation of Heat-Resistant Silver-Platinum Alloy Nanoprisms for Application in Cancer Therapy and Imaging. ECS Meeting Abstracts, 2016, , .	0.0	0
51	Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization. AIP Advances, 2015, 5, .	1.3	30
52	Refractive Index Susceptibility of the Plasmonic Palladium Nanoparticle: Potential as the Third Plasmonic Sensing Material. ACS Nano, 2015, 9, 1895-1904.	14.6	109
53	Particle size dependence of the surface-enhanced Raman scattering properties of densely arranged two-dimensional assemblies of Au(core)–Ag(shell) nanospheres. Physical Chemistry Chemical Physics, 2015, 17, 21182-21189.	2.8	45
54	Development of highly thermoresponsive fluorescent sensors consisting of plasmonic silver nanoprisms and poly(N-isopropylacrylamide)–fluorophore composites. Photochemical and Photobiological Sciences, 2015, 14, 870-874.	2.9	6

#	Article	IF	CITATIONS
55	Photocurrent enhancement of porphyrin molecules over a wide-wavelength region based on combined use of silver nanoprisms with different aspect ratios. Journal of Materials Chemistry C, 2015, 3, 11439-11448.	5.5	16
56	Heteroleptic ruthenium complexes with 6-(ortho-substituted phenyl)-2,2′-bipyridine derivatives. Journal of Organometallic Chemistry, 2014, 749, 312-319.	1.8	6
57	Photophysical and Electrochemical Properties of Thienylnaphthalimide Dyes with Excellent Photostability. Journal of Physical Chemistry A, 2014, 118, 5178-5188.	2.5	13
58	Metal-Enhanced Fluorescence Platforms Based on Plasmonic Ordered Copper Arrays: Wavelength Dependence of Quenching and Enhancement Effects. ACS Nano, 2013, 7, 9997-10010.	14.6	157
59	Densely arranged two-dimensional silver nanoparticle assemblies with optical uniformity over vast areas as excellent surface-enhanced Raman scattering substrates. Physical Chemistry Chemical Physics, 2013, 15, 15802.	2.8	36
60	Development of Plasmon Resonance Sensing Based on Alkylthiol-Coated Triangular Silver Nanoplates on Class Plates. Japanese Journal of Applied Physics, 2013, 52, 04CK06.	1.5	3
61	Substituent Effects for Perylenedicarboxylic Anhydrides on the Performance of Dye-sensitized Solar Cells: The Simpler, the Better. Chemistry Letters, 2013, 42, 450-452.	1.3	2
62	Fabrication of dense two-dimensional assemblies over vast areas comprising gold(core)—silver(shell) nanoparticles and their surface-enhanced Raman scattering properties. Photochemical and Photobiological Sciences, 2013, 13, 82-91.	2.9	8
63	Tuning Optical Properties of Two-Dimensional Ordered Arrays of Silica/Gold and Silver Core/Shell Structured Nanoparticles in Near-Infrared Region. Japanese Journal of Applied Physics, 2012, 51, 04DH04.	1.5	1
64	Simple Fabrication of Two-Dimensional Self-Assemblies Consisting of Gold and Silver Nanoparticles at an Air/Toluene Interface and Their Surface-Enhanced Raman Scattering Activity. Japanese Journal of Applied Physics, 2012, 51, 06FG10.	1.5	2
65	Photocurrent enhancement tuned with plasmonic resonance in self-assembled monolayers fabricated on regularly arrayed gold nanostructures. Photochemical and Photobiological Sciences, 2012, 11, 318-322.	2.9	9
66	Tuning Optical Properties of Two-Dimensional Ordered Arrays of Silica/Gold and Silver Core/Shell Structured Nanoparticles in Near-Infrared Region. Japanese Journal of Applied Physics, 2012, 51, 04DH04.	1.5	2
67	Simple Fabrication of Two-Dimensional Self-Assemblies Consisting of Gold and Silver Nanoparticles at an Air/Toluene Interface and Their Surface-Enhanced Raman Scattering Activity. Japanese Journal of Applied Physics, 2012, 51, 06FG10.	1.5	2
68	Facile Phase Transfer of Gold and Au-Core/Ag-Shell Nanoparticles from Aqueous to Toluene Solution Using Alkylamine Molecules and Their Assemblies on Solid Supports. Japanese Journal of Applied Physics, 2011, 50, 04DH14.	1.5	3
69	Electrochemical Modulation of the Optical Property of Polythiophene-Gold Nanorod Composite Films. Molecular Crystals and Liquid Crystals, 2011, 539, 1/[341]-4/[344].	0.9	1
70	Facile Phase Transfer of Gold and Au-Core/Ag-Shell Nanoparticles from Aqueous to Toluene Solution Using Alkylamine Molecules and Their Assemblies on Solid Supports. Japanese Journal of Applied Physics, 2011, 50, 04DH14.	1.5	1
71	Enormous enhancement in photocurrent generation using electrochemically fabricated goldnanostructures. Chemical Communications, 2010, 46, 306-308.	4.1	60
72	Structural Characterization and Photoelectrochemical Properties of Gold Nanoparticle Multistructures Prepared by Layer-by-Layer Deposition. Japanese Journal of Applied Physics, 2009, 48, 04C132.	1.5	13

#	Article	IF	CITATIONS
73	Facile Fabrication and Photocurrent Generation Properties of Electrochemically Polymerized Fullerene–Poly(ethylene dioxythiophene) Composite Films. Japanese Journal of Applied Physics, 2009, 48, 04C172.	1.5	13
74	Photocurrent generation properties of electrochemically polymerized terthiophene-linked fullerene film. Synthetic Metals, 2009, 159, 965-968.	3.9	16
75	Plasmon-Enhanced Photocurrent Generation from Self-Assembled Monolayers of Phthalocyanine by Using Gold Nanoparticle Films. Langmuir, 2009, 25, 3887-3893.	3.5	56
76	Enhanced Absorption and Emission in a Copper Phthalocyanine–Gold Nanoparticle System Assisted by Localized Surface Plasmon. Chemistry Letters, 2009, 38, 326-327.	1.3	23
77	Preparation and characterization of porphyrin–polythiophene stacked films as prepared by electrochemical method under stirring condition. Thin Solid Films, 2008, 516, 2502-2506.	1.8	12
78	Enhanced Photocurrent Generation in Selfâ€Assembled Monolayers Formed at Plasmonic Gold Nanostructures. Macromolecular Symposia, 2008, 270, 171-176.	0.7	4
79	Characterization and Evaluation of Role of Porphyrin Moiety inmeso-Tetrathienylporphyrin–Polythiophene Composite Film. Japanese Journal of Applied Physics, 2007–46–2632-2635	1.5	13