Hiroko Tokoro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4038504/publications.pdf

Version: 2024-02-01

112 papers 6,026 citations

36 h-index 71685 **76** g-index

121 all docs

121 docs citations

times ranked

121

4242 citing authors

#	Article	IF	CITATIONS
1	Light-induced spin-crossover magnet. Nature Chemistry, 2011, 3, 564-569.	13.6	479
2	High Proton Conduction in a Chiral Ferromagnetic Metal–Organic Quartz-like Framework. Journal of the American Chemical Society, 2011, 133, 15328-15331.	13.7	302
3	90-degree optical switching of output second-harmonic light in chiral photomagnet. Nature Photonics, 2014, 8, 65-71.	31.4	276
4	Photomagnetism in Cyano-Bridged Bimetal Assemblies. Accounts of Chemical Research, 2012, 45, 1749-1758.	15.6	260
5	Photoinduced Magnetization in Copper Octacyanomolybdate. Journal of the American Chemical Society, 2006, 128, 270-277.	13.7	257
6	Coexistence of Ferroelectricity and Ferromagnetism in a Rubidium Manganese Hexacyanoferrate. Angewandte Chemie - International Edition, 2007, 46, 3238-3241.	13.8	251
7	High Proton Conductivity in Prussian Blue Analogues and the Interference Effect by Magnetic Ordering. Journal of the American Chemical Society, 2010, 132, 6620-6621.	13.7	222
8	Synthesis of a metal oxide with a room-temperature photoreversible phase transition. Nature Chemistry, 2010, 2, 539-545.	13.6	221
9	Novel magnetic functionalities of Prussian blue analogs. Dalton Transactions, 2011, 40, 6825.	3.3	202
10	Hard magnetic ferrite with a gigantic coercivity and high frequency millimetre wave rotation. Nature Communications, 2012, 3, 1035.	12.8	184
11	One-shot-laser-pulse-induced demagnetization in rubidium manganese hexacyanoferrate. Applied Physics Letters, 2003, 82, 1245-1247.	3.3	154
12	A Large Thermal Hysteresis Loop Produced by a Charge-Transfer Phase Transition in a Rubidium Manganese Hexacyanoferrate. Inorganic Chemistry, 2004, 43, 5231-5236.	4.0	150
13	Electric-Field-Induced Charge-Transfer Phase Transition: A Promising Approach Toward Electrically Switchable Devices. Journal of the American Chemical Society, 2009, 131, 15049-15054.	13.7	143
14	Visible-Light-Induced Reversible Photomagnetism in Rubidium Manganese Hexacyanoferrate. Chemistry of Materials, 2008, 20, 423-428.	6.7	128
15	Crystal Structure, Charge-Transfer-Induced Spin Transition, and Photoreversible Magnetism in a Cyano-Bridged Cobaltâ° Tungstate Bimetallic Assembly. Chemistry of Materials, 2008, 20, 3048-3054.	6.7	128
16	Observation of Spin Transition in an Octahedrally Coordinated Manganese(II) Compound. Journal of Physical Chemistry B, 2002, 106, 2423-2425.	2.6	125
17	Nonlinear Magnetooptical Effects Caused by Piezoelectric Ferromagnetism inF4Ì,,3m-type Prussian Blue Analogues. Journal of the American Chemical Society, 2005, 127, 11604-11605.	13.7	113
18	Realization of the mean-field universality class in spin-crossover materials. Physical Review B, 2008, 77,	3.2	113

#	Article	IF	CITATIONS
19	Direct Observation of Charge Transfer in Double-Perovskite-LikeRbMn[Fe(CN)6]. Physical Review Letters, 2003, 91, 255502.	7.8	87
20	A Surprisingly Large Thermal Hysteresis Loop in a Reversible Phase Transition of RbxMn[Fe(CN)6](x+2)/3·zH2O. Chemistry of Materials, 2005, 17, 81-84.	6.7	87
21	Nanometer-size hard magnetic ferrite exhibiting high optical-transparency and nonlinear optical-magnetoelectric effect. Scientific Reports, 2015, 5, 14414.	3.3	83
22	External stimulation-controllable heat-storage ceramics. Nature Communications, 2015, 6, 7037.	12.8	82
23	Photoinduced Magnetization with a High Curie Temperature and a Large Coercive Field in a Coâ€W Bimetallic Assembly. Advanced Functional Materials, 2012, 22, 2089-2093.	14.9	81
24	Zeta-Fe2O3 – A new stable polymorph in iron(III) oxide family. Scientific Reports, 2015, 5, 15091.	3.3	81
25	A photoswitchable polar crystal that exhibits superionic conduction. Nature Chemistry, 2020, 12, 338-344.	13.6	73
26	Optical switching between bistable phases in rubidium manganese hexacyanoferrate at room temperature. Journal of Applied Physics, 2005, 97, 10M508.	2.5	60
27	Structural Transition Induced by Charge-Transfer in RbMn[Fe(CN)6] –Investigation by Synchrotron-Radiation X-ray Powder Analysis–. Journal of the Physical Society of Japan, 2002, 71, 2078-2081.	1.6	59
28	Hard Magnetic Ferrite: $\langle i \rangle \hat{l} \mu \langle i \rangle$ -Fe2O3. Bulletin of the Chemical Society of Japan, 2013, 86, 897-907.	3.2	54
29	Synthesis, Crystal Structure, and Magnetic Properties of	.14.9	53
30	Huge thermal hysteresis loop and a hidden stable phase in a charge-transfer phase transition ofRb0.64Mn[Fe(CN)6]0.88â [™] 1.7H2O. Physical Review B, 2006, 73, .	3.2	52
31	Large Coercive Field of 45 kOe in a Magnetic Film Based on Metal-Substituted Îμ-Iron Oxide. Journal of the American Chemical Society, 2017, 139, 13268-13271.	13.7	51
32	Magneticâ€Pole Flip by Millimeter Wave. Advanced Materials, 2020, 32, e2004897.	21.0	48
33	Structural Phase Transition between \hat{I}^3 -Ti ₃ O ₅ and \hat{I}^2 -Ti ₃ O ₅ by Breaking of a One-Dimensionally Conducting Pathway. Crystal Growth and Design, 2015, 15, 653-657.	3.0	44
34	The dielectric constant in a thermal phase transition magnetic material composed of rubidium manganese hexacyanoferrate observed by spectroscopic ellipsometry. Journal of Materials Chemistry, 2005, 15, 3291.	6.7	41
35	Zero Thermal Expansion Fluid and Oriented Film Based on a Bistable Metal-Cyanide Polymer. Chemistry of Materials, 2012, 24, 1324-1330.	6.7	38
36	Mesoscopic bar magnet based on Îμ-Fe2O3 hard ferrite. Scientific Reports, 2016, 6, 27212.	3.3	37

#	Article	IF	Citations
37	Threshold phenomena under photoexcitation of spin-crossover materials with cooperativity due to elastic interactions. Physical Review B, 2009, 80, .	3.2	36
38	Multifunctional Material: Bistable Metal–Cyanide Polymer of Rubidium Manganese Hexacyanoferrate. Bulletin of the Chemical Society of Japan, 2015, 88, 227-239.	3.2	33
39	Humidityâ€Sensitive Magnet Composed of a Cyanoâ€Bridged Co ^{ll} â€"Nb ^{lV} Dimetallic Assembly. European Journal of Inorganic Chemistry, 2010, 2010, 4079-4082.	2.0	32
40	A Cyanoâ€Bridged Vanadium–Niobium Bimetal Assembly Exhibiting a High Curie Temperature of 210 K. European Journal of Inorganic Chemistry, 2012, 2012, 2649-2652.	2.0	32
41	Supramolecular approach to the formation of magneto-active physical gels. Chemical Science, 2012, 3, 3007.	7.4	32
42	Humidity sensitivity, organic molecule sensitivity, and superionic conductivity on porous magnets based on cyano-bridged bimetal assemblies. Coordination Chemistry Reviews, 2019, 380, 572-583.	18.8	31
43	Cesium ion detection by terahertz light. Scientific Reports, 2017, 7, 8088.	3.3	30
44	Strain wave pathway to semiconductor-to-metal transition revealed by time-resolved X-ray powder diffraction. Nature Communications, 2021, 12, 1239.	12.8	29
45	Thermal spin transition in[Fe(NH2â^'trz)3]Br2investigated by spectroscopic ellipsometry. Physical Review B, 2007, 75, .	3.2	28
46	Single Crystal of a Prussian Blue Analog based on Rubidium Manganese Hexacyanoferrate. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2007, 633, 1134-1136.	1.2	26
47	Nanoscale Effects on the Stability of the λâ€Ţi ₃ O ₅ Polymorph. Chemistry - an Asian Journal, 2011, 6, 1886-1890.	3.3	26
48	Theoretical prediction of a charge-transfer phase transition. Scientific Reports, 2018, 8, 63.	3.3	26
49	Landau theory for non-symmetry-breaking electronic instability coupled to symmetry-breaking order parameter applied to Prussian blue analog. Physical Review B, 2020, 102, .	3.2	26
50	Photo-induced charge-transfer phase transition of rubidium manganese hexacyanoferrate in ferromagnetic and paramagnetic states. Journal of Magnetism and Magnetic Materials, 2007, 310, 1422-1428.	2.3	25
51	Experimental access to elastic and thermodynamic properties of RbMnFe(CN)6. Journal of Applied Physics, 2011, 109, .	2.5	25
52	Continuous Change of Second-order Nonlinear Optical Activity in a Cyano-bridged Coordination Polymer. Journal of Physical Chemistry C, 2008, 112, 13095-13098.	3.1	24
53	Phase collapse caused by blue-light irradiation in a cyanobridged coordination polymer. Applied Physics Letters, 2008, 93, .	3.3	24
	Spectroscopic ellipsometry investigations of the thermally induced first-order transition		

Spectroscopic ellipsometry investigations of the thermally induced first-order transition of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mtext>RbMn</mml:mtext><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm

#	Article	IF	Citations
55	Ultrafast dynamics of photoinduced semiconductor-to-metal transition in the optical switching nano-oxideTi3O5. Physical Review B, 2014, 90, .	3.2	24
56	Direct Observation of Chemical Conversion from Fe ₃ O ₄ to ε-Fe ₂ O ₃ by a Nanosize Wet Process. Chemistry of Materials, 2018, 30, 2888-2894.	6.7	24
57	Probing Transient Photoinduced Charge Transfer in Prussian Blue Analogues with Timeâ€Resolved XANES and Optical Spectroscopy. European Journal of Inorganic Chemistry, 2018, 2018, 272-277.	2.0	24
58	Optical Properties of Epsilon Iron Oxide Nanoparticles in the Millimeter- and Terahertz-Wave Regions. Bulletin of the Chemical Society of Japan, 2022, 95, 538-552.	3.2	24
59	Low-pressure-responsive heat-storage ceramics for automobiles. Scientific Reports, 2019, 9, 13203.	3.3	23
60	Extremely low-frequency phonon material and its temperature- and photo-induced switching effects. Chemical Science, 2020, 11, 8989-8998.	7.4	23
61	Evidence for complex multistability in photomagnetic cobalt hexacyanoferrates from combined magnetic and synchrotron x-ray diffraction measurements. Physical Review B, 2009, 79, .	3.2	21
62	Extremely Gradual Spin-Crossover Phenomenon in a Cyano-Bridged Feâ^'Mo Bimetallic Assembly. Journal of Physical Chemistry C, 2009, 113, 15751-15755.	3.1	20
63	Magnetic ground state of nanosized \hat{l}^2 -Fe ₂ O ₃ and its remarkable electronic features. RSC Advances, 2015, 5, 49719-49727.	3.6	20
64	Ultrafast dynamics of reversible photoinduced phase transitions in rubidium manganese hexacyanoferrate investigated by midinfrared CN vibration spectroscopy. Physical Review B, 2012, 86, .	3.2	19
65	Detection of boson peak and fractal dynamics of disordered systems using terahertz spectroscopy. Physical Review E, 2020, 102, 022502.	2.1	19
66	Humidity dependency of the thermal phase transition of a cyano bridged Co–W bimetal assembly. New Journal of Chemistry, 2014, 38, 1950-1954.	2.8	18
67	Magnetic specific heat of the low-temperature phase of rubidium manganese hexacyanoferrate. Chemical Physics Letters, 2004, 388, 379-383.	2.6	17
68	Pressure-Induced Octahedral Rotation in RbMn[Fe(CN) ₆]. Journal of the Physical Society of Japan, 2009, 78, 013602.	1.6	17
69	Selfâ€Assembled Fibers Containing Stable Organic Radical Moieties: Alignment and Magnetic Properties in Liquid Crystals. Chemistry - A European Journal, 2016, 22, 8872-8878.	3.3	16
70	The solvent effect on the structural and magnetic features of bidentate ligand-capped {Co ^{< sup>_{9< sub> (W^{V< sup>(CN)_{8< sub> _{6< sub>} single-molecule magnets. CrystEngComm, 2016, 18, 1495-1504.}}}}}	2.6	15
71	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mrow><mml:mi>î²</mml:mi><mml:m mathvariant="normal">i<mml:mn><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>5</mml:mn></mml:msub></mml:mn></mml:m></mml:mrow> and <mml:math< td=""><td>ntext>â^'< 3.2</td><td>/mml:mtext>< 15</td></mml:math<></mml:mrow>	ntext>â^'< 3.2	/mml:mtext>< 15
72	xmlns:mml="http://www.w3.org/1998/Math/MathML" > cmml:mrow> cmml:mrow> cmml:mi> l> c/mml:mi> cmml:m Photo-induced magnetization and first-principles calculations of a two-dimensional cyanide-bridged Coâ€"W bimetal assembly. Dalton Transactions, 2016, 45, 19249-19256.	ntext>â^'< 3.3	/mml:mtext>

#	Article	IF	Citations
73	Sigmoidally hydrochromic molecular porous crystal with rotatable dendrons. Communications Chemistry, 2020, 3, .	4.5	14
74	Reversible photoswitchable ferromagnetic thin film based on a cyanido-bridged RbCuMo complex. Journal of Materials Chemistry C, 2021, 9, 3081-3087.	5.5	14
75	The phase transition of <i>É</i> -ln <i><</i> Fe2â^' <i><</i> O3 nanomagnets with a large thermal hysteresis loop (invited). Journal of Applied Physics, 2012, 111, .	2.5	13
76	Advances in magnetic films of epsilon-iron oxide toward next-generation high-density recording media. Dalton Transactions, 2021, 50, 452-459.	3.3	13
77	Magnetic phase transition in É>-ln x Fe2 â° x O3 nanowires. Physics of the Solid State, 2013, 55, 2252-2259.	0.6	12
78	Spin-reorientation transition in É-In0.24Fe1.76O3 nanowires. Physics of the Solid State, 2014, 56, 1795-1798.	0.6	11
79	Exploring Ultrafast Photoswitching Pathways in RbMnFe Prussian Blue Analogue. Angewandte Chemie - International Edition, 2021, 60, 23267-23273.	13.8	11
80	Thermally induced and photoinduced phase transitions in rubidium manganese hexacyanoferrate combining charge transfer and structural reorganization. Comptes Rendus Chimie, 2019, 22, 498-507.	0.5	10
81	Single Laser Shot Photoinduced Phase Transition of Rubidium Manganese Hexacyanoferrate Investigated by Xâ€ray Diffraction. European Journal of Inorganic Chemistry, 2019, 2019, 3142-3147.	2.0	10
82	Nonlinear magneto-optical effects and photomagnetism of electrochemically synthesized molecule-based magnets. Journal of Solid State Electrochemistry, 2007, 11, 763-772.	2.5	9
83	Magnetic Dimensional Crossover from Two- to Three-Dimensional Heisenberg Magnetism in a Cu–W Cyano-Bridged Bimetal Assembly. Crystal Growth and Design, 2012, 12, 2013-2017.	3.0	9
84	Out-of-equilibrium lattice response to photo-induced charge-transfer in a MnFe Prussian blue analogue. Journal of Materials Chemistry C, 2021, 9, 6773-6780.	5.5	9
85	Photoâ€induced phase switching dynamics in RbMn[Fe(CN) ₆] probed by accumulation free midâ€infrared spectroscopy. Physica Status Solidi (B): Basic Research, 2011, 248, 491-494.	1.5	8
86	Extended Charge-Transfer State of RbMn[Fe(CN) ₆]. Journal of the Physical Society of Japan, 2007, 76, 123602.	1.6	7
87	Dynamics of photoinduced phase transitions in hexacyanoferrate studied by infrared and Raman spectroscopy. Physica Status Solidi (B): Basic Research, 2011, 248, 477-481.	1.5	7
88	Room-temperature thermally induced relaxation effect in a two-dimensional cyano-bridged Cu-Mo bimetal assembly and thermodynamic analysis of the relaxation process. AIP Advances, 2013, 3, .	1.3	7
89	Large optical third-order nonlinearities in a switchable Prussian blue analogue. Optical Materials Express, 2017, 7, 444.	3.0	5
90	Crystal growth control of rod-shaped Îμ-Fe2O3 nanocrystals. RSC Advances, 2020, 10, 39611-39616.	3.6	5

#	Article	IF	CITATIONS
91	Synthesis of nanosize tetratitanium heptoxide and its anomalous phase transition. Materials Research Letters, 2020, 8, 261-267.	8.7	5
92	Investigation of the vibrational density of states of sodium carboxymethyl starch glass via terahertz time-domain spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 266, 120414.	3.9	5
93	Growth Dynamics of Photoinduced Phase Domain in Cyano-Complex Studied by Boundary Sensitive Raman Spectroscopy. Acta Physica Polonica A, 2012, 121, 375-384.	0.5	5
94	Pressure effect on long-term heat storage ceramics based on Mg-substituted λ-Ti ₃ O ₅ . Materials Advances, 2022, 3, 4824-4830.	5.4	5
95	Firstâ€Principles Calculations and Optical Absorption Spectrum of a Lightâ€Colored Aluminumâ€Substituted εâ€Iron Oxide Magnet. European Journal of Inorganic Chemistry, 2017, 2017, 531-534.	2.0	4
96	Highly Oriented Magnetic Film Composed of Gaâ€Substituted εâ€Iron Oxide and the Angular Dependence of the Magnetic Hysteresis Loops. European Journal of Inorganic Chemistry, 2018, 2018, 847-851.	2.0	4
97	Synthesis of λ-Ti3O5 nanocrystals using a block copolymer. Materials Today Energy, 2020, 18, 100525.	4.7	4
98	Photoinduced charge transfer phase transition in cesium manganese hexacyanoferrate. Journal of Applied Physics, 2007, 101, 09E101.	2.5	3
99	Self-organized formation of spherical porous granules only by one-step heat-treatment in MgO–Fe2O3–Nb2O5 system. Materials Letters, 2016, 163, 43-46.	2.6	3
100	Second-Harmonic and Terahertz Generation in a Prussian-Blue Analogue. European Journal of Inorganic Chemistry, 2018, 2018, 378-384.	2.0	3
101	Effect of lattice deformation on photoinduced phase transition process in RbMn[Fe(CN) ₆]. Physica Status Solidi (B): Basic Research, 2011, 248, 482-485.	1.5	2
102	Observation of the correlation between the phonon frequency and long-range magnetic ordering on a MnW octacyanide molecule-based magnet. Journal of Materials Chemistry C, 2021, 9, 10689-10696.	5. 5	2
103	A magnetic field-switchable millimeter wave switch for 81, 94, and 140 GHz based on metal substituted $\hat{l}\mu$ -iron oxide. Journal of Materials Chemistry C, 2022, 10, 10815-10822.	5.5	2
104	First-Principles Calculations and Optical Absorption Spectrum of a Light-Colored Aluminum-Substituted ε-Iron Oxide Magnet. European Journal of Inorganic Chemistry, 2017, 2017, 530-530.	2.0	1
105	Single Laser Shot Photoinduced Phase Transition of Rubidium Manganese Hexacyanoferrate Investigated by X-ray Diffraction. European Journal of Inorganic Chemistry, 2019, 2019, 3121-3121.	2.0	1
106	Exploring Ultrafast Photoswitching Pathways in RbMnFe Prussian Blue Analogue. Angewandte Chemie, 2021, 133, 23455.	2.0	1
107	Magnetic Materials: Photoinduced Magnetization with a High Curie Temperature and a Large Coercive Field in a Coâ€W Bimetallic Assembly (Adv. Funct. Mater. 10/2012). Advanced Functional Materials, 2012, 22, 2209-2209.	14.9	О
108	THz spectroscopy and THz generation in a Prussian blue analogue. , 2016, , .		0

#	Article	IF	CITATIONS
109	Highly Oriented Magnetic Film Composed of Ga-Substituted ε-Iron Oxide and the Angular Dependence of the Magnetic Hysteresis Loops. European Journal of Inorganic Chemistry, 2018, 2018, 836-836.	2.0	O
110	Magnetic Recording: Magneticâ€Pole Flip by Millimeter Wave (Adv. Mater. 48/2020). Advanced Materials, 2020, 32, 2070361.	21.0	0
111	Innentitelbild: Exploring Ultrafast Photoswitching Pathways in RbMnFe Prussian Blue Analogue (Angew. Chem. 43/2021). Angewandte Chemie, 2021, 133, 23214-23214.	2.0	0
112	Boson Peak Investigation of Unusually Disproportionated Amorphous Silicon Monoxide via Terahertz Spectroscopy., 2020,,.		0