Bruno Alonso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4038097/publications.pdf

Version: 2024-02-01

46 4,394 17 43 papers citations h-index g-index

50 50 50 5326
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	lonic guest in ionic host: ionosilica ionogel composites <i>via</i> ionic liquid confinement in ionosilica supports. Materials Chemistry Frontiers, 2022, 6, 939-947.	5.9	6
2	Host–Guest Silicalite-1 Zeolites: Correlated Disorder and Phase Transition Inhibition by a Small Guest Modification. Chemistry of Materials, 2022, 34, 366-387.	6.7	5
3	Regression Machine Learning Models Used to Predict DFT-Computed NMR Parameters of Zeolites. Computation, 2022, 10, 74.	2.0	6
4	Silica-based fibers with axially aligned mesopores from chitin self-assembly and sol-gel chemistry. Microporous and Mesoporous Materials, 2022, 341, 112057.	4.4	0
5	Looking into the dynamics of molecular crystals of ibuprofen and terephthalic acid using ¹⁷ O and ² H nuclear magnetic resonance analyses. Magnetic Resonance in Chemistry, 2021, 59, 975-990.	1.9	11
6	High-Pressure Synthesis and Gas-Sensing Tests of 1-D Polymer/Aluminophosphate Nanocomposites. ACS Applied Materials & Description (2011), 13, 27237-27244.	8.0	5
7	Labeling and Probing the Silica Surface Using Mechanochemistry and 17 O NMR Spectroscopy**. Chemistry - A European Journal, 2021, 27, 12574-12588.	3.3	10
8	Ubiquitous Presence of Intermolecular CH…O Hydrogen Bonds in Asâ€synthesized Hostâ€Guest Zeolite Materials. ChemistrySelect, 2021, 6, 9728-9734.	1.5	2
9	Zeolite Structure Direction: Identification, Strength and Involvement of Weak CHâ«â«â«O Hydrogen Bonds. ChemPhysChem, 2020, 21, 149-153.	2.1	11
10	Phosphorylated Micro- and Nanocellulose-Filled Chitosan Nanocomposites as Fully Sustainable, Biologically Active Bioplastics. ACS Sustainable Chemistry and Engineering, 2020, 8, 18354-18365.	6.7	35
11	Direct ¹⁷ O Isotopic Labeling of Oxides Using Mechanochemistry. Inorganic Chemistry, 2020, 59, 13050-13066.	4.0	24
12	Host–Guest and Guest–Guest Interactions of P- and N-Containing Structure Directing Agents Entrapped inside MFI-Type Zeolite by Multinuclear NMR Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 22324-22334.	3.1	9
13	From nano-to micro-particles of polysaccharide-silica composites through self-assembly and sol-gel processes. , 2019, , 87-104.		1
14	Insertion and Confinement of H ₂ O in Hydrophobic Siliceous Zeolites at High Pressure. Journal of Physical Chemistry C, 2019, 123, 17432-17439.	3.1	8
15	ZSM-5 Zeolite: Complete Al Bond Connectivity and Implications on Structure Formation from Solid-State NMR and Quantum Chemistry Calculations. Journal of Physical Chemistry Letters, 2018, 9, 19-24.	4.6	47
16	Rheological behavior of hybrid suspensions of chitin nanorods and siloxane oligomers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 470-478.	4.7	3
17	Hybrid Nanocomposites Through Colloidal Interactions Between Crystalline Polysaccharide Nanoparticles and Oxide Precursors., 2018,, 3213-3251.		0
18	PeakForce QNM AFM study of chitin-silica hybrid films. Carbohydrate Polymers, 2017, 166, 139-145.	10.2	13

#	Article	IF	Citations
19	Biobased Cellulosic–CuInS ₂ Nanocomposites for Optoelectronic Applications. ACS Sustainable Chemistry and Engineering, 2017, 5, 3115-3122.	6.7	24
20	Intermolecular interactions in AST zeolites through ¹⁴ N NMR and DFT calculations. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 202-207.	0.5	6
21	Synthesis of textured polysaccharide–silica nanocomposites: a comparison between cellulose and chitin nanorod precursors. New Journal of Chemistry, 2017, 41, 6014-6024.	2.8	5
22	Probing Disorder in Al-ZSM-5 Zeolites by ¹⁴ N NMR Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 15831-15841.	3.1	14
23	Recent Advances in 14N Solid-State NMR. Annual Reports on NMR Spectroscopy, 2016, 87, 175-235.	1.5	18
24	Hybrid Nanocomposites Through Colloidal Interactions Between Crystalline Polysaccharide Nanoparticles and Oxide Precursors. , 2016, , 1-39.		1
25	Mesoporous Alumina from Colloidal Biotemplating of Al Clusters. Chemistry - A European Journal, 2015, 21, 3206-3210.	3.3	15
26	Improved silica–titania catalysts by chitin biotemplating. Catalysis Science and Technology, 2015, 5, 415-427.	4.1	27
27	Preferential orientations of structure directing agents in zeolites. Dalton Transactions, 2015, 44, 16680-16683.	3.3	13
28	DFT-D Study of ¹⁴ N Nuclear Quadrupolar Interactions in Tetra- <i>n</i> -alkyl Ammonium Halide Crystals. Journal of Physical Chemistry A, 2014, 118, 3525-3533.	2.5	10
29	Encapsulation of complementary model drugs in spray-dried nanostructured materials. Journal of Sol-Gel Science and Technology, 2013, 68, 307-316.	2.4	9
30	14N solid-state NMR: a sensitive probe of the local order in zeolites. Physical Chemistry Chemical Physics, 2013, 15, 18349.	2.8	19
31	Solid-state NMR studies of micelle-templated mesoporous solids. Chemical Society Reviews, 2013, 42, 3808-3820.	38.1	14
32	Electric-Field Alignment of Chitin Nanorod–Siloxane Oligomer Reactive Suspensions. Langmuir, 2013, 29, 8208-8212.	3.5	30
33	Efficient mesoporous silica–titania catalysts from colloidal self-assembly. Chemical Communications, 2012, 48, 10648.	4.1	39
34	Drug nano-domains in spray-dried ibuprofen–silica microspheres. Physical Chemistry Chemical Physics, 2012, 14, 12285.	2.8	16
35	14N: A Sensitive NMR Probe for the Study of Surfactant–Oxide Interfaces. Journal of Physical Chemistry C, 2011, 115, 19293-19302.	3.1	17
36	Tunable hierarchical porosity from self-assembled chitin–silica nano-composites. Journal of Materials Chemistry, 2011, 21, 16997.	6.7	37

#	Article	IF	CITATION
37	Perspectives in 1H, 14N and 81Br solid-state NMR studies of interfaces in materials textured by self-assembled amphiphiles. Comptes Rendus Chimie, 2010, 13, 431-442.	0.5	16
38	Chitin–Silica Nanocomposites by Selfâ€Assembly. Angewandte Chemie - International Edition, 2010, 49, 8201-8204.	13.8	77
39	Tuning nanophase separation and drug delivery kinetics through spray drying and self-assembly. New Journal of Chemistry, 2010, 34, 607.	2.8	11
40	Hybrid Organicâ^'Inorganic Mesostructured Membranes: Interfaces and Organization at Different Length Scales. Journal of Physical Chemistry C, 2010, 114, 11730-11740.	3.1	17
41	¹⁴ N and ⁸¹ Br Quadrupolar Nuclei as Sensitive NMR Probes of <i>n</i> >hlkyltrimethylammonium Bromide Crystal Structures. An Experimental and Theoretical Study. Journal of Physical Chemistry B, 2009, 113, 11906-11920.	2.6	28
42	Spray-dried mesoporous silica microspheres with adjustable textures and pore surfaces homogenously covered by accessible thiol functions. Journal of Materials Chemistry, 2008, 18, 1368.	6.7	45
43	New insights into the formation of textures through spray-drying and self-assembly. Microporous and Mesoporous Materials, 2007, 106, 76-94.	4.4	18
44	Morphological and textural control of spray-dried mesoporous silica-based spheres. Journal of Materials Chemistry, 2004, 14, 2006-2016.	6.7	33
45	Multi-scale NMR characterisation of mesostructured materials using through-bond polarisation transfer, fast MAS, and spin diffusion. Journal of Magnetic Resonance, 2003, 163, 347-352.	2.1	64
46	Modelling one- and two-dimensional solid-state NMR spectra. Magnetic Resonance in Chemistry, 2002, 40. 70-76.	1.9	3,565