Bruno Alonso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4038097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modelling one- and two-dimensional solid-state NMR spectra. Magnetic Resonance in Chemistry, 2002, 40, 70-76.	1.9	3,565
2	Chitin–Silica Nanocomposites by Selfâ€Assembly. Angewandte Chemie - International Edition, 2010, 49, 8201-8204.	13.8	77
3	Multi-scale NMR characterisation of mesostructured materials using through-bond polarisation transfer, fast MAS, and spin diffusion. Journal of Magnetic Resonance, 2003, 163, 347-352.	2.1	64
4	ZSM-5 Zeolite: Complete Al Bond Connectivity and Implications on Structure Formation from Solid-State NMR and Quantum Chemistry Calculations. Journal of Physical Chemistry Letters, 2018, 9, 19-24.	4.6	47
5	Spray-dried mesoporous silica microspheres with adjustable textures and pore surfaces homogenously covered by accessible thiol functions. Journal of Materials Chemistry, 2008, 18, 1368.	6.7	45
6	Efficient mesoporous silica–titania catalysts from colloidal self-assembly. Chemical Communications, 2012, 48, 10648.	4.1	39
7	Tunable hierarchical porosity from self-assembled chitin–silica nano-composites. Journal of Materials Chemistry, 2011, 21, 16997.	6.7	37
8	Phosphorylated Micro- and Nanocellulose-Filled Chitosan Nanocomposites as Fully Sustainable, Biologically Active Bioplastics. ACS Sustainable Chemistry and Engineering, 2020, 8, 18354-18365.	6.7	35
9	Morphological and textural control of spray-dried mesoporous silica-based spheres. Journal of Materials Chemistry, 2004, 14, 2006-2016.	6.7	33
10	Electric-Field Alignment of Chitin Nanorod–Siloxane Oligomer Reactive Suspensions. Langmuir, 2013, 29, 8208-8212.	3.5	30
11	¹⁴ N and ⁸¹ Br Quadrupolar Nuclei as Sensitive NMR Probes of <i>n</i> -Alkyltrimethylammonium Bromide Crystal Structures. An Experimental and Theoretical Study. Journal of Physical Chemistry B, 2009, 113, 11906-11920.	2.6	28
12	Improved silica–titania catalysts by chitin biotemplating. Catalysis Science and Technology, 2015, 5, 415-427.	4.1	27
13	Biobased Cellulosic–CuInS ₂ Nanocomposites for Optoelectronic Applications. ACS Sustainable Chemistry and Engineering, 2017, 5, 3115-3122.	6.7	24
14	Direct ¹⁷ 0 Isotopic Labeling of Oxides Using Mechanochemistry. Inorganic Chemistry, 2020, 59, 13050-13066.	4.0	24
15	14N solid-state NMR: a sensitive probe of the local order in zeolites. Physical Chemistry Chemical Physics, 2013, 15, 18349.	2.8	19
16	New insights into the formation of textures through spray-drying and self-assembly. Microporous and Mesoporous Materials, 2007, 106, 76-94.	4.4	18
17	Recent Advances in 14N Solid-State NMR. Annual Reports on NMR Spectroscopy, 2016, 87, 175-235.	1.5	18
18	Hybrid Organicâ^'Inorganic Mesostructured Membranes: Interfaces and Organization at Different Length Scales. Journal of Physical Chemistry C, 2010, 114, 11730-11740.	3.1	17

Bruno Alonso

#	Article	IF	CITATIONS
19	14N: A Sensitive NMR Probe for the Study of Surfactant–Oxide Interfaces. Journal of Physical Chemistry C, 2011, 115, 19293-19302.	3.1	17
20	Perspectives in 1H, 14N and 81Br solid-state NMR studies of interfaces in materials textured by self-assembled amphiphiles. Comptes Rendus Chimie, 2010, 13, 431-442.	0.5	16
21	Drug nano-domains in spray-dried ibuprofen–silica microspheres. Physical Chemistry Chemical Physics, 2012, 14, 12285.	2.8	16
22	Mesoporous Alumina from Colloidal Biotemplating of Al Clusters. Chemistry - A European Journal, 2015, 21, 3206-3210.	3.3	15
23	Solid-state NMR studies of micelle-templated mesoporous solids. Chemical Society Reviews, 2013, 42, 3808-3820.	38.1	14
24	Probing Disorder in Al-ZSM-5 Zeolites by ¹⁴ N NMR Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 15831-15841.	3.1	14
25	Preferential orientations of structure directing agents in zeolites. Dalton Transactions, 2015, 44, 16680-16683.	3.3	13
26	PeakForce QNM AFM study of chitin-silica hybrid films. Carbohydrate Polymers, 2017, 166, 139-145.	10.2	13
27	Tuning nanophase separation and drug delivery kinetics through spray drying and self-assembly. New Journal of Chemistry, 2010, 34, 607.	2.8	11
28	Zeolite Structure Direction: Identification, Strength and Involvement of Weak CHâ‹â‹â‹O Hydrogen Bonds. ChemPhysChem, 2020, 21, 149-153.	2.1	11
29	Looking into the dynamics of molecular crystals of ibuprofen and terephthalic acid using ¹⁷ 0 and ² H nuclear magnetic resonance analyses. Magnetic Resonance in Chemistry, 2021, 59, 975-990.	1.9	11
30	DFT-D Study of ¹⁴ N Nuclear Quadrupolar Interactions in Tetra- <i>n</i> -alkyl Ammonium Halide Crystals. Journal of Physical Chemistry A, 2014, 118, 3525-3533.	2.5	10
31	Labeling and Probing the Silica Surface Using Mechanochemistry and 17 Oâ€NMR Spectroscopy**. Chemistry - A European Journal, 2021, 27, 12574-12588.	3.3	10
32	Encapsulation of complementary model drugs in spray-dried nanostructured materials. Journal of Sol-Gel Science and Technology, 2013, 68, 307-316.	2.4	9
33	Host–Guest and Guest–Guest Interactions of P- and N-Containing Structure Directing Agents Entrapped inside MFI-Type Zeolite by Multinuclear NMR Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 22324-22334.	3.1	9
34	Insertion and Confinement of H ₂ O in Hydrophobic Siliceous Zeolites at High Pressure. Journal of Physical Chemistry C, 2019, 123, 17432-17439.	3.1	8
35	Intermolecular interactions in AST zeolites through ¹⁴ N NMR and DFT calculations. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 202-207.	0.5	6
36	lonic guest in ionic host: ionosilica ionogel composites <i>via</i> ionic liquid confinement in ionosilica supports. Materials Chemistry Frontiers, 2022, 6, 939-947.	5.9	6

Bruno Alonso

#	Article	IF	CITATIONS
37	Regression Machine Learning Models Used to Predict DFT-Computed NMR Parameters of Zeolites. Computation, 2022, 10, 74.	2.0	6
38	Synthesis of textured polysaccharide–silica nanocomposites: a comparison between cellulose and chitin nanorod precursors. New Journal of Chemistry, 2017, 41, 6014-6024.	2.8	5
39	High-Pressure Synthesis and Gas-Sensing Tests of 1-D Polymer/Aluminophosphate Nanocomposites. ACS Applied Materials & Interfaces, 2021, 13, 27237-27244.	8.0	5
40	Host–Guest Silicalite-1 Zeolites: Correlated Disorder and Phase Transition Inhibition by a Small Guest Modification. Chemistry of Materials, 2022, 34, 366-387.	6.7	5
41	Rheological behavior of hybrid suspensions of chitin nanorods and siloxane oligomers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 470-478.	4.7	3
42	Ubiquitous Presence of Intermolecular CH…O Hydrogen Bonds in Asâ€synthesized Hostâ€Guest Zeolite Materials. ChemistrySelect, 2021, 6, 9728-9734.	1.5	2
43	From nano-to micro-particles of polysaccharide-silica composites through self-assembly and sol-gel processes. , 2019, , 87-104.		1
44	Hybrid Nanocomposites Through Colloidal Interactions Between Crystalline Polysaccharide Nanoparticles and Oxide Precursors. , 2016, , 1-39.		1
45	Hybrid Nanocomposites Through Colloidal Interactions Between Crystalline Polysaccharide Nanoparticles and Oxide Precursors. , 2018, , 3213-3251.		0
46	Silica-based fibers with axially aligned mesopores from chitin self-assembly and sol-gel chemistry. Microporous and Mesoporous Materials, 2022, 341, 112057.	4.4	0