Nele Festjens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4037785/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toxic proteins released from mitochondria in cell death. Oncogene, 2004, 23, 2861-2874.	2.6	791
2	Necrosis, a well-orchestrated form of cell demise: Signalling cascades, important mediators and concomitant immune response. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1371-1387.	0.5	555
3	Caspases in cell survival, proliferation and differentiation. Cell Death and Differentiation, 2007, 14, 44-55.	5.0	517
4	Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death and Differentiation, 2010, 17, 922-930.	5.0	471
5	RIP1, a kinase on the crossroads of a cell's decision to live or die. Cell Death and Differentiation, 2007, 14, 400-410.	5.0	432
6	Mitochondrial intermembrane proteins in cell death. Biochemical and Biophysical Research Communications, 2003, 304, 487-497.	1.0	350
7	Molecular Mechanisms and Pathophysiology of Necrotic Cell Death. Current Molecular Medicine, 2008, 8, 207-220.	0.6	283
8	Caspase Inhibitors Promote Alternative Cell Death Pathways. Science's STKE: Signal Transduction Knowledge Environment, 2006, 2006, pe44-pe44.	4.1	180
9	Tumor necrosis factor-mediated cell death: to break or to burst, that's the question. Cellular and Molecular Life Sciences, 2010, 67, 1567-1579.	2.4	180
10	Macrophages use different internalization mechanisms to clear apoptotic and necrotic cells. Cell Death and Differentiation, 2006, 13, 2011-2022.	5.0	167
11	GlycoDelete engineering of mammalian cells simplifies N-glycosylation of recombinant proteins. Nature Biotechnology, 2014, 32, 485-489.	9.4	134
12	Bcl-2 Family Members as Sentinels of Cellular Integrity and Role of Mitochondrial Intermembrane Space Proteins in Apoptotic Cell Death. Acta Haematologica, 2004, 111, 7-27.	0.7	99
13	Butylated hydroxyanisole is more than a reactive oxygen species scavenger. Cell Death and Differentiation, 2006, 13, 166-169.	5.0	90
14	Inflammatory Caspases: Targets for Novel Therapies. Current Pharmaceutical Design, 2007, 13, 367-385.	0.9	89
15	Protein synthesis persists during necrotic cell death. Journal of Cell Biology, 2005, 168, 545-551.	2.3	67
16	Glycome profiling using modern glycomics technology: technical aspects and applications. Biological Chemistry, 2010, 391, 149-161.	1.2	64
17	Ring finger protein 213 assembles into a sensor for ISGylated proteins with antimicrobial activity. Nature Communications, 2021, 12, 5772.	5.8	51
18	Fed-batch fermentation of GM-CSF-producing glycoengineered Pichia pastoris under controlled specific growth rate. Microbial Cell Factories, 2010, 9, 93.	1.9	46

Nele Festjens

#	Article	IF	CITATIONS
19	Intermediate Domain of Receptor-interacting Protein Kinase 1 (RIPK1) Determines Switch between Necroptosis and RIPK1 Kinase-dependent Apoptosis. Journal of Biological Chemistry, 2012, 287, 14863-14872.	1.6	40
20	Disruption of the SapM locus in <i>Mycobacterium bovis</i> BCG improves its protective efficacy as a vaccine against <i>M. tuberculosis</i> . EMBO Molecular Medicine, 2011, 3, 222-234.	3.3	39
21	Characterization of genome-wide ordered sequence-tagged Mycobacterium mutant libraries by Cartesian Pooling-Coordinate Sequencing. Nature Communications, 2015, 6, 7106.	5.8	34
22	Caspase-containing complexes in the regulation of cell death and inflammation. Biological Chemistry, 2006, 387, 1005-16.	1.2	31
23	The mitochondrial serine protease HtrA2/Omi cleaves RIP1 during apoptosis of Ba/F3 cells induced by growth factor withdrawal. Cell Research, 2010, 20, 421-433.	5.7	26
24	Human T cell glycosylation and implications on immune therapy for cancer. Human Vaccines and Immunotherapeutics, 2020, 16, 2374-2388.	1.4	22
25	The caspase-generated fragments of PKR cooperate to activate full-length PKR and inhibit translation. Cell Death and Differentiation, 2007, 14, 1050-1059.	5.0	17
26	Reference genome and comparative genome analysis for the WHO reference strain for Mycobacterium bovis BCG Danish, the present tuberculosis vaccine. BMC Genomics, 2019, 20, 561.	1.2	16
27	A guide to <i>Mycobacterium</i> mutagenesis. FEBS Journal, 2019, 286, 3757-3774.	2.2	14
28	SapM mutation to improve the BCG vaccine: Genomic, transcriptomic and preclinical safety characterization. Vaccine, 2019, 37, 3539-3551.	1.7	9
29	T Cell Engaging Immunotherapies, Highlighting Chimeric Antigen Receptor (CAR) T Cell Therapy. Cancers, 2021, 13, 6067.	1.7	9
30	Development of a Counterselectable Transposon To Create Markerless Knockouts from an 18,432-Clone Ordered Mycobacterium bovis Bacillus Calmette-Guérin Mutant Resource. MSystems, 2020, 5, .	1.7	5
31	Exploration of Synergistic Action of Cell Wall-Degrading Enzymes against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0065921.	1.4	5
32	Necrosis: Molecular Mechanisms and Physiological Roles. , 2009, , 599-633.		2
33	Necrotic cell death, a controlled way of cellular explosion. , 2008, , 189-190.		0