Martin Fischer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4037612/publications.pdf

Version: 2024-02-01

489802 591227 2,580 30 18 27 citations h-index g-index papers 36 36 36 4936 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	TargetGeneReg 2.0: a comprehensive web-atlas for p53, p63, and cell cycle-dependent gene regulation. NAR Cancer, 2022, 4, zcac009.	1.6	19
2	p53-mediated AKT and mTOR inhibition requires RFX7 and DDIT4 and depends on nutrient abundance. Oncogene, 2022, 41, 1063-1069.	2.6	19
3	Synthesizing genome regulation data with vote-counting. Trends in Genetics, 2022, 38, 1208-1216.	2.9	5
4	Coordinating gene expression during the cell cycle. Trends in Biochemical Sciences, 2022, 47, 1009-1022.	3.7	72
5	Mice Are Not Humans: The Case of p53. Trends in Cancer, 2021, 7, 12-14.	3.8	21
6	p63 and p53: Collaborative Partners or Dueling Rivals?. Frontiers in Cell and Developmental Biology, 2021, 9, 701986.	1.8	16
7	Transcription factor RFX7 governs a tumor suppressor network in response to p53 and stress. Nucleic Acids Research, 2021, 49, 7437-7456.	6.5	17
8	Simultaneous expression of MMB-FOXM1 complex components enables efficient bypass of senescence. Scientific Reports, 2021, 11, 21506.	1.6	8
9	Tumor suppressor p53: from engaging DNA to target gene regulation. Nucleic Acids Research, 2020, 48, 8848-8869.	6.5	47
10	Dissecting the DNA binding landscape and gene regulatory network of p63 and p53. ELife, 2020, 9, .	2.8	26
11	RB, p $130\hat{A}$ and p 107 differentially repress G $1/S$ and G $2/M$ genes after p 53 activation. Nucleic Acids Research, 2019, 47, 11197-11208.	6.5	47
12	DREAM and RB cooperate to induce gene repression and cell-cycle arrest in response to p53 activation. Nucleic Acids Research, 2019, 47, 9087-9103.	6.5	61
13	Conservation and divergence of the p53 gene regulatory network between mice and humans. Oncogene, 2019, 38, 4095-4109.	2.6	42
14	Abstract 2538: p53 activation induces cell cycle arrest by promoting DREAM and RB repression of cell cycle genes. , 2019, , .		1
15	Control of Cell Division. , 2018, , 176-185.		О
16	TP53., 2018,,.		0
17	Census and evaluation of p53 target genes. Oncogene, 2017, 36, 3943-3956.	2.6	685
18	Transcriptional landscape of the human cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3473-3478.	3.3	110

#	Article	IF	CITATIONS
19	Human papilloma virus E7 oncoprotein abrogates the p53-p21-DREAM pathway. Scientific Reports, 2017, 7, 2603.	1.6	70
20	Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 638-662.	2.3	176
21	p21 governs p53's repressive side. Cell Cycle, 2016, 15, 2852-2853.	1.3	9
22	Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F target gene analyses identifies cell cycle gene regulatory networks. Nucleic Acids Research, 2016, 44, 6070-6086.	6.5	263
23	The p53-p21-DREAM-CDE/CHR pathway regulates G ₂ /M cell cycle genes. Nucleic Acids Research, 2016, 44, 164-174.	6.5	318
24	Does <i>Arabidopsis thaliana</i> <scp>DREAM</scp> of cell cycle control?. EMBO Journal, 2015, 34, 1987-1989.	3.5	16
25	Indirect p53-dependent transcriptional repression of <i> Survivin, CDC25C, </i> and <i> PLK1 </i> genes requires the cyclin-dependent kinase inhibitor p21/CDKN1A and CDE/CHR promoter sites binding the DREAM complex. Oncotarget, 2015, 6, 41402-41417.	0.8	48
26	Polo-like kinase 4 transcription is activated via CRE and NRF1 elements, repressed by DREAM through CDE/CHR sites and deregulated by HPV E7 protein. Nucleic Acids Research, 2014, 42, 163-180.	6.5	48
27	The transcription factor p53: Not a repressor, solely an activator. Cell Cycle, 2014, 13, 3037-3058.	1.3	119
28	The Forkhead Transcription Factor FOXM1 Controls Cell Cycle-Dependent Gene Expression through an Atypical Chromatin Binding Mechanism. Molecular and Cellular Biology, 2013, 33, 227-236.	1.1	185
29	p53 and Cell Cycle Dependent Transcription of kinesin family member 23 (KIF23) Is Controlled Via a CHR Promoter Element Bound by DREAM and MMB Complexes. PLoS ONE, 2013, 8, e63187.	1.1	39
30	The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes. Nucleic Acids Research, 2012, 40, 1561-1578.	6.5	90