List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4037540/publications.pdf Version: 2024-02-01

IFAN RONCALL

#	Article	IF	CITATIONS
1	Conjugated poly(thiophenes): synthesis, functionalization, and applications. Chemical Reviews, 1992, 92, 711-738.	23.0	2,630
2	Synthetic Principles for Bandgap Control in Linear π-Conjugated Systems. Chemical Reviews, 1997, 97, 173-206.	23.0	2,084
3	Triphenylamineâ^'Thienylenevinylene Hybrid Systems with Internal Charge Transfer as Donor Materials for Heterojunction Solar Cells. Journal of the American Chemical Society, 2006, 128, 3459-3466.	6.6	757
4	Molecular Bulk Heterojunctions: An Emerging Approach to Organic Solar Cells. Accounts of Chemical Research, 2009, 42, 1719-1730.	7.6	669
5	Molecular Engineering of the Band Gap of ï€â€Conjugated Systems: Facing Technological Applications. Macromolecular Rapid Communications, 2007, 28, 1761-1775.	2.0	635
6	Molecular Materials for Organic Photovoltaics: Small is Beautiful. Advanced Materials, 2014, 26, 3821-3838.	11.1	534
7	3,4-Ethylenedioxythiophene (EDOT) as a versatile building block for advanced functional π-conjugated systems. Journal of Materials Chemistry, 2005, 15, 1589-1610.	6.7	411
8	From One―to Threeâ€Dimensional Organic Semiconductors: In Search of the Organic Silicon?. Advanced Materials, 2007, 19, 2045-2060.	11.1	386
9	BODIPY derivatives as donor materials for bulk heterojunction solar cells. Chemical Communications, 2009, , 1673.	2.2	319
10	Solution-processable single-material molecular emitters for organic light-emitting devices. Chemical Society Reviews, 2011, 40, 3509.	18.7	306
11	Electrogenerated functional conjugated polymers as advanced electrode materials. Journal of Materials Chemistry, 1999, 9, 1875-1893.	6.7	282
12	Linear π-conjugated systems derivatized with C60-fullerene as molecular heterojunctions for organic photovoltaics. Chemical Society Reviews, 2005, 34, 483.	18.7	249
13	Design and Synthesis of Pushâ^Pull Chromophores for Second-Order Nonlinear Optics Derived from Rigidified Thiophene-Based π-Conjugating Spacers. Journal of Organic Chemistry, 2002, 67, 205-218.	1.7	210
14	Oligothienylenevinylenes as a New Class of Multinanometer Linear π-Conjugated Systems for Micro- and Nanoelectronics. Accounts of Chemical Research, 2000, 33, 147-156.	7.6	209
15	Poly mono-, bi- and trithiophene: Effect of oligomer chain length on the polymer properties. Synthetic Metals, 1986, 15, 323-331.	2.1	207
16	Design of Organic Semiconductors: Tuning the Electronic Properties of π-Conjugated Oligothiophenes with the 3,4-Ethylenedioxythiophene (EDOT) Building Block. Chemistry - A European Journal, 2005, 11, 3742-3752.	1.7	205
17	Planarized Star-Shaped Oligothiophenes as a New Class of Organic Semiconductors for Heterojunction Solar Cells. Advanced Materials, 2003, 15, 1939-1943.	11.1	197
18	Conductivity and conjugation length in poly(3-methylthiophene) thin films. Macromolecules, 1989, 22, 804-809.	2.2	187

#	Article	IF	CITATIONS
19	Light-Emitting Organic Solar Cells Based on a 3D Conjugated System with Internal Charge Transfer. Advanced Materials, 2006, 18, 3033-3037.	11.1	180
20	Triphenylamineâ^'Oligothiophene Conjugated Systems as Organic Semiconductors for Opto-Electronics. Chemistry of Materials, 2006, 18, 2584-2590.	3.2	176
21	A tailored hybrid BODIPY–oligothiophene donor for molecular bulk heterojunction solar cells with improved performances. Chemical Communications, 2010, 46, 5082.	2.2	170
22	Effect of Mono- versus Di-ammonium Cation of 2,2â€~-Bithiophene Derivatives on the Structure of Organicâ^'Inorganic Hybrid Materials Based on Iodo Metallates. Inorganic Chemistry, 2003, 42, 5330-5339.	1.9	160
23	Linearly extended π-donors: when tetrathiafulvalene meets conjugated oligomers and polymers. Journal of Materials Chemistry, 1997, 7, 2307-2321.	6.7	157
24	Planarized Star-Shaped Oligothiophenes with Enhanced π-Electron Delocalization. Organic Letters, 2004, 6, 273-276.	2.4	155
25	Proquinoid acceptors as building blocks for the design of efficient ï€-conjugated fluorophores with high electron affinity. Chemical Communications, 2000, , 939-940.	2.2	151
26	Molecular Engineering of the Internal Charge Transfer in Thiopheneâ^'Triphenylamine Hybrid Ï€-Conjugated Systems. Journal of Organic Chemistry, 2007, 72, 8332-8336.	1.7	150
27	Multi-donor molecular bulk heterojunction solar cells: improving conversion efficiency by synergistic dye combinations. Journal of Materials Chemistry, 2009, 19, 2298.	6.7	138
28	Synthesis and Characterization of the Electronic and Electrochemical Properties of Thienylenevinylene Oligomers with Multinanometer Dimensions. Journal of the American Chemical Society, 1998, 120, 8150-8158.	6.6	137
29	Push–pull chromophores based on 2,2′-bi(3,4-ethylenedioxythiophene) (BEDOT) π-conjugating spacer. Tetrahedron Letters, 2001, 42, 1507-1510.	0.7	135
30	Single Material Solar Cells: the Next Frontier for Organic Photovoltaics?. Advanced Energy Materials, 2011, 1, 147-160.	10.2	135
31	Effect of Chain Extension on the Electrochemical and Electronic Properties of ï€-Conjugated Soluble Thienylenevinylene Oligomers. Journal of the American Chemical Society, 1997, 119, 10774-10784.	6.6	133
32	Triphenylamine/Tetracyanobutadiene-Based D-A-D π-Conjugated Systems as Molecular Donors for Organic Solar Cells. Organic Letters, 2011, 13, 3098-3101.	2.4	133
33	Stable and Soluble Oligo(3,4-ethylenedioxythiophene)s End-Capped with Alkyl Chains. Journal of Organic Chemistry, 2003, 68, 5357-5360.	1.7	131
34	High Onâ^'Off Conductance Switching Ratio in Optically-Driven Self-Assembled Conjugated Molecular Systems. ACS Nano, 2010, 4, 2411-2421.	7.3	128
35	Electrogenerated poly(thiophenes) with extremely narrow bandgap and high stability under n-doping cycling. Chemical Communications, 1998, , 2081-2082.	2.2	127
36	Electrolyte effect on the electrochemical properties of poly(3-methylthiophene) thin films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 218, 107-118.	0.3	122

#	Article	IF	CITATIONS
37	The Dawn of Single Material Organic Solar Cells. Advanced Science, 2019, 6, 1801026.	5.6	119
38	Beyond efficiency: scalability of molecular donor materials for organic photovoltaics. Journal of Materials Chemistry C, 2016, 4, 3677-3685.	2.7	117
39	Three-dimensional tetra(oligothienyl)silanes as donor material for organic solar cells. Journal of Materials Chemistry, 2006, 16, 3040.	6.7	116
40	Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) from a dimer precursor. Synthetic Metals, 1998, 93, 111-114.	2.1	107
41	Intra- and Intermolecular Photoinduced Energy and Electron Transfer between Oligothienylenevinylenes and N-Methylfulleropyrrolidine. Journal of Physical Chemistry A, 2002, 106, 21-31.	1.1	105
42	Manipulation of the Open-Circuit Voltage of Organic Solar Cells by Desymmetrization of the Structure of Acceptor-Donor-Acceptor Molecules. Advanced Functional Materials, 2011, 21, 4379-4387.	7.8	98
43	Unsymmetrical Triphenylamineâ€Oligothiophene Hybrid Conjugated Systems as Donor Materials for Highâ€Voltage Solutionâ€Processed Organic Solar Cells. Advanced Energy Materials, 2011, 1, 540-545.	10.2	98
44	Field-Effect Transistors Based on Oligothienylenevinylenes: From Solution π-Dimers to High-Mobility Organic Semiconductors. Advanced Materials, 2003, 15, 306-310.	11.1	96
45	Luminescent Solar Collectors: Quo Vadis?. Advanced Energy Materials, 2020, 10, 2001907.	10.2	96
46	Spectroelectrochemistry of Electrogenerated Tetrathiafulvalene-Derivatized Poly(thiophenes):Â Toward a Rational Design of Organic Conductors with Mixed Conduction. Journal of Physical Chemistry B, 1998, 102, 7776-7781.	1.2	94
47	Modification of the structure and electrochemical properties of poly(thiophene) by ether groups. Journal of the Chemical Society Chemical Communications, 1989, , 679.	2.0	92
48	Triphenylamine and some of its derivatives as versatile building blocks for organic electronic applications. Polymer International, 2019, 68, 589-606.	1.6	91
49	Structure–properties relationships in conjugated molecules based on diketopyrrolopyrrole for organic photovoltaics. Dyes and Pigments, 2012, 95, 126-133.	2.0	88
50	Effect of Structural Factor on the Electropolymerization of Bithiophenic Precursors Containing a 3,4-Ethylenedisulfanylthiophene Unit. Macromolecules, 2005, 38, 6806-6812.	2.2	87
51	Structural modulation of internal charge transfer in small molecular donors for organic solar cells. Chemical Communications, 2012, 48, 8907.	2.2	87
52	Electrosynthesis of Highly Electroactive Tetrathiafulvalene-Derivatized Polythiophenes. Advanced Materials, 1998, 10, 541-545.	11.1	86
53	Extended Thienylenevinylene Oligomers as Highly Efficient Molecular Wires. Angewandte Chemie - International Edition, 1998, 37, 942-945.	7.2	86
54	Preparation and electroactivity of poly(thiophene) electrodes modified by electrodeposition of palladium particles. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 255, 53-69.	0.3	85

#	Article	IF	CITATIONS
55	A molecular approach of poly(thiophene) functionalization. Synthetic Metals, 1989, 28, 341-348.	2.1	84
56	Hydrophilic Oligo(oxyethylene)-Derivatized Poly(3,4-ethylenedioxythiophenes):Â Cation-Responsive Optoelectroelectrochemical Properties and Solid-State Chromism. Chemistry of Materials, 2002, 14, 449-457.	3.2	82
57	Orientational Effect on the Photophysical Properties of Quaterthiophene–C60 Dyads. Chemistry - A European Journal, 2002, 8, 5415-5429.	1.7	81
58	Small D–π–A Systems with <i>o</i> â€Phenyleneâ€Bridged Accepting Units as Active Materials for Organic Photovoltaics. Chemistry - A European Journal, 2013, 19, 9948-9960.	1.7	80
59	A Mechanofluorochromic Push–Pull Small Molecule with Aggregationâ€Controlled Linear and Nonlinear Optical Properties. Advanced Materials, 2015, 27, 4285-4289.	11.1	80
60	Modification of the electrochemical and electronic properties of electrogenerated poly(3,4-ethylenedioxythiophene) by hydroxymethyl and oligo(oxyethylene) substituents. Electrochemistry Communications, 2000, 2, 72-76.	2.3	77
61	Electrochemical Synthesis of C60-Derivatized Poly(thiophene)s from Tailored Precursors. Macromolecules, 2003, 36, 3020-3025.	2.2	77
62	Structural control of conjugation in functionalized polythiophenes. Macromolecules, 1990, 23, 1347-1352.	2.2	76
63	Molecular and supramolecular engineering of ï€-conjugated systems for photovoltaic conversion. Thin Solid Films, 2006, 511-512, 567-575.	0.8	76
64	Crown-Annelated Oligothiophenes as Model Compounds for Molecular Actuation. Journal of the American Chemical Society, 2003, 125, 1363-1370.	6.6	74
65	An efficient strategy towards small bandgap polymers: The rigidification of the ?-conjugated system. Advanced Materials, 1994, 6, 846-848.	11.1	72
66	Effect of Local Molecular Structure on the Chain-Length Dependence of the Electronic Properties of Thiophene-Based I€-Conjugated Systems. Journal of Organic Chemistry, 2003, 68, 7254-7265.	1.7	72
67	Electroluminescence and Laser Emission of Soluble Pure Red Fluorescent Molecular Glasses Based on Dithienylbenzothiadiazole. Advanced Functional Materials, 2009, 19, 2978-2986.	7.8	72
68	Design and Synthesis of Ruthenium Oligothienylacetylide Complexes. New Materials for Acoustically Induced Nonlinear Optics. Organometallics, 2005, 24, 687-695.	1.1	69
69	3D π-Conjugated Oligothiophenes Based on Sterically Twisted Bithiophene Nodes. Advanced Functional Materials, 2007, 17, 1163-1171.	7.8	69
70	Phthalimide end-capped thienoisoindigo and diketopyrrolopyrrole as non-fullerene molecular acceptors for organic solar cells. Journal of Materials Chemistry A, 2016, 4, 250-256.	5.2	69
71	Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance. Joule, 2022, 6, 8-15.	11.7	66
72	Enhancement of the mean conjugation length in conducting polythiophenes. Synthetic Metals, 1987, 18, 139-144.	2.1	65

#	Article	IF	CITATIONS
73	Linearly extended tetrathiafulvalene analogues with fused thiophene units as π-conjugated spacers. Journal of Materials Chemistry, 2003, 13, 1324-1332.	6.7	65
74	Third-order nonlinear optical properties and two-photon absorption in branched oligothienylenevinylenes. Optics Communications, 2002, 209, 461-466.	1.0	64
75	Structural Control of the Reversible Dimerization of π-Conjugated Oligomeric Cation Radicals. Journal of the American Chemical Society, 1999, 121, 8760-8765.	6.6	63
76	A New Dyad Based on C60and a Conjugated Dimethylaniline-Substituted Dithienylethylene Donor. Journal of Organic Chemistry, 1999, 64, 4884-4886.	1.7	62
77	Mixed π-conjugated oligomers of thiophene and 3,4-ethylenedioxythiophene (EDOT). Tetrahedron Letters, 2000, 41, 5521-5525.	0.7	61
78	Photomechanical Actuation and Manipulation of the Electronic Properties of Linear π-Conjugated Systems. Journal of the American Chemical Society, 2003, 125, 2888-2889.	6.6	61
79	A star-shaped triphenylamine π-conjugated system with internal charge-transfer as donor material for hetero-junction solar cells. Chemical Communications, 2006, , 1416.	2.2	61
80	Long-Range Alignments of Single Fullerenes by Site-Selective Inclusion into a Double-Cavity 2D Open Network. Journal of the American Chemical Society, 2009, 131, 12864-12865.	6.6	61
81	The first evidence for the generation of radicals and formation of electrically conducting molecular materials by protic doping of tetrathiafulvalenes. Advanced Materials, 1994, 6, 298-300.	11.1	59
82	Rapid and Efficient Post-Polymerization Functionalization of Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives on an Electrode Surface. Advanced Materials, 2001, 13, 1249-1252.	11.1	59
83	Crown-Tetrathiafulvalenes Attached to a Pyrrole or an EDOT Unit: Synthesis, Electropolymerization and Recognition Properties. Chemistry - A European Journal, 2004, 10, 6497-6509.	1.7	59
84	Donor–acceptor–donor (D–A–D) molecules based on isoindigo as active material for organic solar cells. New Journal of Chemistry, 2013, 37, 502-507.	1.4	59
85	Chain Length Dependence of the Photovoltaic Properties of Monodisperse Donor–Acceptor Oligomers as Model Compounds of Polydisperse Low Band Gap Polymers. Advanced Functional Materials, 2014, 24, 7538-7547.	7.8	58
86	Low Oxidation Potential Tetrathiafulvalene Analogues Based on 3,4-Dialkoxythiophene π-Conjugating Spacers. Journal of Organic Chemistry, 1999, 64, 4267-4272.	1.7	57
87	Vibrational and Quantum-Chemical Study of Push–Pull Chromophores for Second-Order Nonlinear Optics from Rigidified Thiophene-Based I€-Conjugating Spacers. Chemistry - A European Journal, 2003, 9, 3670-3682.	1.7	57
88	3,4-Phenylenedioxythiophene (PheDOT): a novel platform for the synthesis of planar substituted π–donor conjugated systems. Journal of Materials Chemistry, 2004, 14, 1396-1400.	6.7	57
89	Bridged Dithienylethylenes as Precursors of Small Bandgap Electrogenerated Conjugated Polymers. Journal of Organic Chemistry, 1997, 62, 2401-2408.	1.7	56
90	Synthesis and Electronic Properties of Adducts of Oligothienylenevinylenes and Fullerene C60. Advanced Materials, 2002, 14, 283-287.	11.1	56

#	Article	IF	CITATIONS
91	Photon-transport properties of luminescent solar concentrators: analysis and optimization. Applied Optics, 1984, 23, 2809.	2.1	54
92	Tuning of the aqueous electroactivity of substituted poly(thiophene)s by ether groups. Synthetic Metals, 1990, 36, 267-273.	2.1	53
93	Electrosynthesis of a tetrathiafulvalene-derivatized polythiophene. Macromolecules, 1993, 26, 4094-4099.	2.2	53
94	3- and 3,4-Bis(2-cyanoethylsulfanyl)thiophenes as Building Blocks for Functionalized Thiophene-Based Ï€-Conjugated Systems. Journal of Organic Chemistry, 2002, 67, 3961-3964.	1.7	53
95	Reduction of the steric hindrance to conjugation in 3,4-disubstituted poly(thiophenes); cyclopenta[c]thiophene and thieno[c]thiophene as precursors of electrogenerated conducting polymers. Journal of the Chemical Society Chemical Communications, 1987, , 1500.	2.0	51
96	Poly(fhiorinated 3-alkyl thiophene). Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 277, 355-358.	0.3	51
97	Synthesis and Metal Cation Complexing Properties of Crown-Annelated Terthiophenes Containing 3,4-Ethylenedioxythiophene. Journal of Organic Chemistry, 2007, 72, 5285-5290.	1.7	50
98	Polarizability and Internal Charge Transfer in Thiophene–Triphenylamine Hybrid π-Conjugated Systems. Journal of Physical Chemistry B, 2011, 115, 9379-9386.	1.2	50
99	Thieno[3,4-b]-1,4-oxathiane:  An Unsymmetrical Sulfur Analogue of 3,4-Ethylenedioxythiophene (EDOT) as a Building Block for Linear π-Conjugated Systems. Organic Letters, 2002, 4, 607-609.	2.4	49
100	Effect of substitution of 3,4-ethylenedioxythiophene (EDOT) on the electronic properties of the derived electrogenerated low band gap conjugated polymersElectronic supplementary information (ESI) available: experimental and spectroscopic data. See http://www.rsc.org/suppdata/jm/b4/b403818e/. Journal of Materials Chemistry, 2004, 14, 1679.	6.7	49
101	An efficient multi-functional material based on polyether-substituted indolocarbazole for perovskite solar cells and solution-processed non-doped OLEDs. Journal of Materials Chemistry A, 2019, 7, 1539-1547.	5.2	49
102	Huge enhancement of the quadratic nonlinear optical susceptibility in push–pull chromophores based on bridged dithienylethylene spacers. Chemical Communications, 2000, , 1597-1598.	2.2	48
103	Alternated Quinoid/Aromatic Units in Terthiophenes Building Blocks for Electroactive Narrow Band Gap Polymers. Extended Spectroscopic, Solid State, Electrochemical, and Theoretical Study. Journal of Physical Chemistry B, 2005, 109, 16616-16627.	1.2	48
104	Electronic Properties and Reactivity of Short-Chain Oligomers of 3,4-Phenylenedioxythiophene (PheDOT). Chemistry - A European Journal, 2006, 12, 2960-2966.	1.7	48
105	Electronic, Optical, and Vibrational Properties of Bridged Dithienylethylene-Based NLO Chromophores. Journal of Physical Chemistry C, 2008, 112, 3109-3120.	1.5	48
106	Electrogenerated poly(thiophenes) derivatized by bipyridine ligands and metal complexes. Journal of Materials Chemistry, 2004, 14, 421-427.	6.7	46
107	Star-shaped conjugated systems derived from dithiafulvenyl-derivatized triphenylamines as active materials for organic solar cells. Solar Energy Materials and Solar Cells, 2008, 92, 1170-1174.	3.0	46
108	Star-shaped triazine–thiophene conjugated systems. Tetrahedron Letters, 2009, 50, 5673-5676.	0.7	46

#	Article	IF	CITATIONS
109	Asymmetrically 4,7-Disubstituted Benzothiadiazoles as Efficient Non-doped Solution-Processable Green Fluorescent Emitters. Organic Letters, 2009, 11, 5318-5321.	2.4	45
110	Thiophene-based conjugated oligomers and polymers with high electron affinity. Advanced Materials, 1996, 8, 990-994.	11.1	44
111	Small bandgap molecular semiconductors based on rigidified tetrathiafulvalene–bithiophene hybrid conjugated systems. Journal of the Chemical Society Chemical Communications, 1994, , 1765-1766.	2.0	43
112	Effects of structure on the optical and redox properties of the oligothiophene- Tetrathiafulvalene hybrid system. Advanced Materials, 1994, 6, 841-845.	11.1	42
113	Oxidative dimerization of 2-(1,4-dithiafulven-6-yl)thiophenes: an alternative route towards extensively Ï€-conjugated tetrathiafulvalene analogs. Tetrahedron Letters, 1995, 36, 2983-2986.	0.7	42
114	Strong π-electron donors based on a self-rigidified 2,2′-bi(3,4-ethylenedioxy)thiophene–tetrathiafulvalene hybrid π-conjugated system. Tetrahedron Letters, 2003, 44, 649-652.	0.7	42
115	Electrogenerated conjugated polymers incorporating a ferrocene-derivatized-(3,4-ethylenedioxythiophene). Electrochemistry Communications, 2004, 6, 249-253.	2.3	42
116	Exploiting the potential of 2-((5-(4-(diphenylamino)phenyl)thiophen-2-yl)methylene)malononitrile as an efficient donor molecule in vacuum-processed bulk-heterojunction organic solar cells. RSC Advances, 2014, 4, 5236.	1.7	42
117	Neuromorphic Timeâ€Dependent Pattern Classification with Organic Electrochemical Transistor Arrays. Advanced Electronic Materials, 2018, 4, 1800166.	2.6	42
118	Synthesis of a Thermally Stable Hybrid Acene-Thiophene Organic Semiconductor via a Soluble Precursor. Organic Letters, 2005, 7, 3513-3516.	2.4	41
119	MoO3/CuI hybrid buffer layer for the optimization of organic solar cells based on a donor–acceptor triphenylamine. Solar Energy Materials and Solar Cells, 2013, 110, 107-114.	3.0	41
120	Control of the bandgap of conducting polymers by rigidification of the π-conjugated system. Journal of the Chemical Society Chemical Communications, 1994, , 2249-2250.	2.0	40
121	Electrogenerated poly(dendrimers) containing conjugated poly(thiophene) chains. Chemical Communications, 2000, , 507-508.	2.2	38
122	Manipulation of the band gap and efficiency of a minimalist push–pull molecular donor for organic solar cells. Journal of Materials Chemistry C, 2015, 3, 5145-5151.	2.7	36
123	Structure-properties relationships in triarylamine-based donor-acceptor molecules containing naphtyl groups as donor material for organic solar cells. Scientific Reports, 2015, 5, 9031.	1.6	35
124	Effects of Structural Factors on the π-Dimerization and/or Disproportionation of the Cation Radical of Extended TTF Containing Thiophene-Based π-Conjugated Spacers. Chemistry - A European Journal, 2002, 8, 784-792.	1.7	34
125	Structural effects on the characteristics of organic field effect transistors based on new oligothiophene derivatives. Synthetic Metals, 2004, 146, 365-371.	2.1	34
126	Solution-processable thienoisoindigo-based molecular donors for organic solar cells with high open-circuit voltage. Dyes and Pigments, 2015, 115, 17-22.	2.0	34

#	Article	IF	CITATIONS
127	Photomechanical Control of the Electronic Properties of Linearπ-Conjugated Systems. Chemistry - A European Journal, 2003, 9, 5297-5306.	1.7	33
128	Fine Tuning of the Electronic Properties of Linear π-Conjugated Oligomers by Covalent Bridging. Chemistry - A European Journal, 2006, 12, 1244-1255.	1.7	33
129	Electrogenerated small bandgap π-conjugated polymers derived from substituted dithienylethylenes. Journal of the Chemical Society Chemical Communications, 1995, , 2309-2310.	2.0	32
130	Oligothienylenevinylenes incorporating 3,4-ethylenedioxythiophene (EDOT) units. Tetrahedron, 2005, 61, 3045-3053.	1.0	32
131	Poly(3,6-dimethoxy-thieno[3,2-b]thiophene): a possible alternative to poly(3,4-ethylenedioxythiophene) (PEDOT). Chemical Communications, 2005, , 1161-1163.	2.2	32
132	Electropolymerized Selfâ€Assembled Monolayers of a 3,4â€Ethylenedioxythiopheneâ€Thiophene Hybrid System. Advanced Functional Materials, 2008, 18, 2163-2171.	7.8	32
133	Asymmetrically 9,10-disubstituted anthracenes as soluble and stable blue electroluminescent molecular glasses. Organic Electronics, 2008, 9, 649-655.	1.4	32
134	Effects of Substituents on Transport Properties of Molecular Materials for Organic Solar Cells: A Theoretical Investigation. Chemistry of Materials, 2017, 29, 673-681.	3.2	31
135	Electrochemically induced intramolecular cyclization of 1,2-bis(1,4-dithiafulven-6-yl)benzenes. Tetrahedron Letters, 1994, 35, 1991-1994.	0.7	29
136	Cation template assisted electrosynthesis of a highly π-conjugated polythiophene containing oligooxyethylene segments. Electrochemistry Communications, 2000, 2, 1-5.	2.3	29
137	Crystal structure of (NH3–R–NH3)(NH3–R–NH2)PbI5 (R=5,5′-bis(ethylsulfanyl)-2,2′-bithiophene): interaction as a tool to reach densely packed organic layers in organic-inorganic perovskites. Journal of Solid State Chemistry, 2004, 177, 1067-1071.	NH3+â⊂N 1.4	H2 29
138	Evidence for the contribution of sulfur–bromine intramolecular interactions to the self-rigidification of thiophene-based ï€-conjugated systems. New Journal of Chemistry, 2008, 32, 932.	1.4	29
139	Miniaturization of molecular conjugated systems for organic solar cells: towards pigmy donors. RSC Advances, 2013, 3, 5811.	1.7	29
140	Electro-oxidation of substituted conjugated sexithienyls. Journal of Electroanalytical Chemistry, 1993, 361, 185-191.	1.9	28
141	3,4-Vinylenedioxythiophene (VDOT): a new building block for thiophene-based π-conjugated systems. Chemical Communications, 2006, , 275-277.	2.2	28
142	Structural Control of the Electronic Properties of Photodynamic Azobenzene-Derivatized Ĩ€-Conjugated Oligothiophenes. Journal of Physical Chemistry A, 2006, 110, 3488-3494.	1.1	28
143	Electropolymerization of triphenylamine–dithiafulvene hybrid extended pi-conjugated systems. New Journal of Chemistry, 2009, 33, 801.	1.4	28
144	Quantum chemical DFT and spectroscopic study of a push–pull chromophore for second-order nonlinear optics containing bithiophene as the electron relay. Computational and Theoretical Chemistry, 2004, 709, 187-193.	1.5	27

#	Article	IF	CITATIONS
145	Electropolymerization of three-dimensional π-conjugated system based on 3,4-ethylenedioxythiophene (EDOT). Electrochemistry Communications, 2008, 10, 1427-1430.	2.3	27
146	Quaterthiophenes with Terminal Indeno[1,2- <i>b</i>]thiophene Units as <i>p</i> -Type Organic Semiconductors. Journal of Organic Chemistry, 2009, 74, 1054-1064.	1.7	27
147	Bilayer Hybrid Solar Cells Based on Triphenylamineâ^'Thienylenevinylene Dye and TiO2. Journal of Physical Chemistry C, 2010, 114, 11659-11664.	1.5	27
148	Oligothiophene-derivatized azobenzene as immobilized photoswitchable conjugated systems. Chemical Communications, 2010, 46, 3657.	2.2	27
149	Extended hybrid tetrathiafulvalene π-donors with oligothienylenevinylene conjugated spacer groups. Advanced Materials, 1995, 7, 390-394.	11.1	26
150	Electro-oxidation of tetra(terthienyl)silanes: Towards 3D electroactive π-conjugated systems. Journal of Electroanalytical Chemistry, 1995, 381, 257-260.	1.9	26
151	Electropolymerization of crown-annelated bithiophenes. Electrochemistry Communications, 2007, 9, 1587-1591.	2.3	26
152	Redox States and Associated Interchain Processes of Thienylenevinylene Oligomers. Chemistry - A European Journal, 2000, 6, 1698-1707.	1.7	26
153	Theoretical characterization of the electronic properties of extended thienylenevinylene oligomers. Journal of Chemical Physics, 1999, 111, 6643-6649.	1.2	25
154	Extended Oligothienylenevinylenes End-Capped with 1,4-Dithiafulvenyl ï€-Donor Groups: Toward a Supramolecular Control of Effective Conjugation Length. Advanced Materials, 1999, 11, 134-138.	11.1	25
155	Internally referenced analysis of charge-transfer reactions in a new ferrocenyl bithiophenic conducting polymer through cyclic voltammetry. Chemical Communications, 2008, , 6606.	2.2	25
156	Synthesis and Chainâ€Length Dependence of the Electronic Properties of <i>Ï€</i> â€Conjugated Dithieno[3,2â€ <i>b</i> :2′,3′â€ <i>d</i>]pyrrole (DTP) Oligomers. Macromolecular Rapid Communications, 2010, 31, 1467-1472.	2.0	25
157	Evaluation of bis-dicyanovinyl short-chain conjugated systems as donor materials for organic solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 462-468.	3.0	25
158	Simple and Versatile Molecular Donors for Organic Photovoltaics Prepared by Metalâ€Free Synthesis. Chemistry - A European Journal, 2015, 21, 1598-1608.	1.7	25
159	Mono- and di-substituted pyrene-based donor-ï€-acceptor systems with phenyl and thienyl ï€-conjugating bridges. Dyes and Pigments, 2020, 181, 108527.	2.0	25
160	Effect of heteroaromatic spacers on the structure and electrical properties of cation radical salts of tetrathiafulvalene analogs. Journal of Materials Chemistry, 1998, 8, 363-366.	6.7	24
161	Effects of aromatic spacers on the properties of organic field effect transistors based on π-extended tetrathiafulvalene derivatives. Journal of Materials Chemistry, 2009, 19, 3648.	6.7	24
162	Negative Differential Resistance, Memory, and Reconfigurable Logic Functions Based on Monolayer Devices Derived from Gold Nanoparticles Functionalized with Electropolymerizable TEDOT Units. Journal of Physical Chemistry C, 2017, 121, 10131-10139.	1.5	24

#	Article	IF	CITATIONS
163	Molecular engineering of hybrid π-conjugated oligomers combining 3,4-ethylenedioxythiophene (EDOT) and thiophene-S,S-dioxide units. Tetrahedron, 2007, 63, 9774-9783.	1.0	23
164	Linearly ï€-conjugated oligothiophenes as simple metal-free sensitizers for dye-sensitized solar cells. Journal of Materials Chemistry C, 2015, 3, 7756-7761.	2.7	23
165	Effect of side chains on the electronic and photovoltaic properties of diketopyrrolopyrrole-based molecular acceptors. Organic Electronics, 2016, 37, 479-484.	1.4	23
166	Formation and electrochemical desorption of stable and electroactive self-assembled monolayers (SAMs) of oligothiophene–fulleropyrrolidine dyads. Chemical Communications, 2001, , 913-914.	2.2	22
167	Small molecular push–pull donors for organic photovoltaics: effect of the heterocyclic π-spacer. RSC Advances, 2015, 5, 102550-102554.	1.7	22
168	Extensively π-conjugated soluble oligothienylenevinylenes. Chemical Communications, 1997, , 301-302.	2.2	21
169	Electropolymerizable 3DÏ€-conjugated architectures with ethylenedioxythiophene (EDOT) end-groups as precursors of electroactive conjugated networks. Journal of Materials Chemistry, 2010, 20, 10260.	6.7	21
170	A Crownâ€Ether Loopâ€Derivatized Oligothiophene Doubly Attached on Gold Surface as Cationâ€Binding Switchable Molecular Junction. Advanced Materials, 2013, 25, 427-431.	11.1	21
171	Small Molecular Donors for Organic Solar Cells Obtained by Simple and Clean Synthesis. ChemSusChem, 2014, 7, 1046-1050.	3.6	21
172	Influence of the highest occupied molecular orbital energy level of the donor material on the effectiveness of the anode buffer layer in organic solar cells. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1989-1994.	0.8	20
173	Tuning of the Photovoltaic Parameters of Molecular Donors by Covalent Bridging. Advanced Functional Materials, 2013, 23, 4854-4861.	7.8	20
174	3,4-Ethylenedioxythiophene (EDOT) as building block for the design of small molecular donors for organic solar cells. RSC Advances, 2013, 3, 704-707.	1.7	20
175	Structural Control of the Molecular Packing and Dynamics of Mechanofluorochromic Materials Based on Small Donor–Acceptor Systems with Turnâ€On Luminescence. Advanced Optical Materials, 2020, 8, 2000420.	3.6	20
176	Anchoring number-performance relationship of zinc-porphyrin sensitizers for dye-sensitized solar cells: A combined experimental and theoretical study. Dyes and Pigments, 2017, 136, 697-706.	2.0	19
177	Bandgap control through reduction of bond length alternation in bridged poly(diethienylethylene)s. Chemical Communications, 1997, , 569-570.	2.2	18
178	A Dithienylbenzothiadiazole Pure Red Molecular Emitter with Electron Transport and Exciton Selfâ€Confinement for Nondoped Organic Red‣ightâ€Emitting Diodes. Advanced Materials, 2008, 20, 4172-4175.	11.1	18
179	Efficient synthesis of 3,6-dialkoxythieno[3,2-b]thiophenes as precursors of electrogenerated conjugated polymers. Organic and Biomolecular Chemistry, 2011, 9, 588-595.	1.5	18
180	One step synthesis of D-A-D chromophores as active materials for organic solar cells by basic condensation. Dyes and Pigments, 2015, 113, 402-408.	2.0	18

#	Article	IF	CITATIONS
181	New luminescent back reflectors for the improvement of the spectral response and efficiency of luminescent solar concentrators. Solar Cells, 1984, 13, 133-143.	0.6	17
182	Oligo(furan-2,5-diylvinylene)s as π-conjugating spacers in linearly extended hybrid tetrathiafulvalene analogues. Journal of Materials Chemistry, 1996, 6, 1859-1863.	6.7	17
183	A donor–acceptor–donor (D–A–D) molecule based on 3-alkoxy-4-cyanothiophene and dithienopyrrole units as active material for organic solar cells. New Journal of Chemistry, 2012, 36, 2412.	1.4	17
184	Mechanofluorochromic and thermochromic properties of simple tetraphenylethylene derivatives with fused fluorine containing 1,4-dioxocane rings. Dyes and Pigments, 2017, 146, 323-330.	2.0	17
185	Electrosynthesis of a functional conducting polymer incorporating ferrocene unit from an EDOT-based bithiophenic precursor. Journal of Electroanalytical Chemistry, 2007, 603, 149-154.	1.9	16
186	Structure-properties relationships in solution-processable single-material molecular emitters for efficient green organic light-emitting diodes. Organic Electronics, 2012, 13, 1092-1099.	1.4	16
187	Arylamine Based Photoactive Pushâ€Pull Molecular Systems: A Brief Overview of the Chemistry "Made in Angers― Chemical Record, 2019, 19, 1123-1130.	2.9	16
188	Singleâ€Material Organic Solar Cells Based on Small Molecule Homojunctions: An Outdated Concept or a New Challenge for the Chemistry and Physics of Organic Photovoltaics?. Advanced Energy Materials, 2021, 11, 2102987.	10.2	16
189	New Photomechanical Molecular Switch Based on a Linear π-Conjugated System. Journal of Physical Chemistry C, 2017, 121, 12416-12425.	1.5	15
190	Poly(thiophenes) derivatized with linear and macrocyclic polyethers: from cation detection to molecular actuation. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 61, 227-239.	1.6	14
191	3D-conjugated systems based on oligothiophenes and phosphorus nodes. Organic and Biomolecular Chemistry, 2008, 6, 3202.	1.5	14
192	Push–Pull Triphenylamine Chromophore Syntheses and Optoelectronic Characterizations. ChemPlusChem, 2015, 80, 697-703.	1.3	14
193	Terthiophene-cyanovinylene π-conjugated polymers as donor material for organic solar cells. Synthetic Metals, 2009, 159, 2534-2538.	2.1	13
194	Production of Nanostructured Conjugated Polymers by Electropolymerization of Tailored Tetrahedral Precursors. ChemElectroChem, 2014, 1, 1219-1225.	1.7	13
195	A bridged low band gap A–D–A quaterthiophene as efficient donor for organic solar cells. Journal of Materials Chemistry C, 2015, 3, 390-398.	2.7	13
196	Synthesis of Hybrid Electroactive Materials by Lowâ€Potential Electropolymerization of Gold Nanoparticles Capped with Tailored EDOTâ€Thiophene Precursor Units. ChemElectroChem, 2014, 1, 1312-1318.	1.7	12
197	Thiolate Chemistry: A Powerful and Versatile Synthetic Tool for Immobilization/Functionalization of Oligothiophenes on a Gold Surface. Chemistry - A European Journal, 2011, 17, 5628-5640.	1.7	11
198	Engineered Electronic Contacts for Composite Electrodes in Li Batteries Using Thiophene-Based Molecular Junctions. Chemistry of Materials, 2015, 27, 4057-4065.	3.2	11

#	Article	IF	CITATIONS
199	Électropolymérisation des bis-1,3-(1,4-dithiafulvène-6-yl)benzènes. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1995, 92, 863-866.	0.2	11
200	Water-compatible electrogenerated poly(thiophenes) derived from linked EDOT-based bithiophenic precursors. Electrochemistry Communications, 2006, 8, 533-538.	2.3	10
201	Stability and 2,4-dinitrotoluene response of organic field effect transistors based on π-conjugated thiophene oligomers. Materials Science and Engineering C, 2008, 28, 965-970.	3.8	10
202	Poly(thiophenes) derivatized with oligo(oxyethylene) chains as donor materials for organic solar cells. Solar Energy Materials and Solar Cells, 2009, 93, 1624-1629.	3.0	10
203	Tristhienylphenylamine – extended dithiafulvene hybrids as bifunctional electroactive species. Organic and Biomolecular Chemistry, 2011, 9, 1034-1040.	1.5	10
204	Films minces de poly(thiophènes) hautement conducteurs. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1989, 86, 85-92.	0.2	10
205	Structural Control of the Horizontal Double Fixation of Oligothiophenes on Gold. Chemistry - A European Journal, 2008, 14, 6237-6246.	1.7	9
206	C60-small arylamine push-pull dyads for single-material organic solar cells. Dyes and Pigments, 2019, 171, 107748.	2.0	9
207	A cation radical salt of an extended tetrathiafulvalene analogue with a difurylethylene spacer. New Journal of Chemistry, 1998, 22, 1051-1054.	1.4	8
208	Adsorption Behavior of Conjugated {C}3-Oligomers on Si(100) and Highly Oriented Pyrolytic Graphite Surfaces. Langmuir, 2003, 19, 3350-3356.	1.6	8
209	Structure–reactivity relationships in bithiophenic precursors based on the 3-phenoxythiophene building block. Journal of Materials Chemistry, 2005, 15, 3473.	6.7	8
210	Design, synthesis and electrochemical properties of a thiophene derivative functionalized with a siderophore-like chelator. Journal of Electroanalytical Chemistry, 2009, 626, 42-46.	1.9	8
211	Manipulation of the electronic and photovoltaic properties of materials based on small push-pull molecules by substitution of the arylamine donor block by aliphatic groups. Organic Electronics, 2016, 37, 294-304.	1.4	8
212	A blue dye-sensitized solar cell based on a covalently bridged oligothiophene chromophore. Tetrahedron Letters, 2016, 57, 505-508.	0.7	8
213	Effects of Anthryl Groups on the Charge Transport and Photovoltaic Properties of Small Triarylamineâ€Based Donorâ€Acceptor Molecules: A Joint Experimental and Theoretical Study. ChemistrySelect, 2017, 2, 6296-6303.	0.7	8
214	Physical mechanisms involved in the formation and operation of memory devices based on a monolayer of gold nanoparticle-polythiophene hybrid materials. Nanoscale Advances, 2019, 1, 2718-2726.	2.2	8
215	Structure–properties of small donor–acceptor molecules for homojunction single-material organic solar cells. Journal of Materials Chemistry C, 2022, 10, 5716-5726.	2.7	8
216	ADDA and ADADA systems based on triphenylamine as molecular donors for organic photovoltaics. Tetrahedron Letters, 2015, 56, 4607-4612.	0.7	7

#	Article	IF	CITATIONS
217	Molecular electron-acceptors based on benzodithiophene for organic photovoltaics. Tetrahedron Letters, 2015, 56, 2324-2328.	0.7	7
218	Thermally induced crystallization, hole-transport, NLO and photovoltaic activity of a bis-diarylamine-based push-pull molecule. Scientific Reports, 2017, 7, 8317.	1.6	7
219	3,4-Ethylenedioxythiophene (EDOT) and 3,4-ethylenedithiathiophene (EDTT) as terminal blocks for oligothiophene dyes for DSSCs. Tetrahedron Letters, 2016, 57, 4815-4820.	0.7	6
220	Alcohol-soluble anode modifier for highly efficient inverted solar cells with oligo-oxyethylene chains. Organic Electronics, 2019, 68, 200-204.	1.4	6
221	Recycling by-products in new small molecular electrochromic materials with ultra bistability. Dyes and Pigments, 2019, 162, 697-703.	2.0	6
222	Extended triphenylamine conjugated systems derivatized by perfluorophenyl groups. Tetrahedron Letters, 2011, 52, 6573-6577.	0.7	5
223	Synthesis of push–pull triarylamine dyes containing 5,6-difluoro-2,1,3-benzothiadiazole units by direct arylation and their evaluation as active material for organic photovoltaics. Materials Advances, 2021, 2, 7456-7462.	2.6	5
224	Effect of the mode of fixation of the thienyl rings on the electronic properties of electron acceptors based on indacenodithiophene (IDT). Dyes and Pigments, 2021, 187, 109116.	2.0	5
225	Effect of 4-biphenyl groups on the charge transport and photovoltaic properties of arylamine based push–pull systems. New Journal of Chemistry, 2020, 44, 11441-11447.	1.4	5
226	Effect of alkyl substituents on the adsorption of thienylenevinylene oligomers on the Si(100) surface. Surface Science, 2001, 473, 1-7.	0.8	4
227	CuAAC-Based Assembly and Characterization of a New Molecular Dyad for Single Material Organic Solar Cell. Metals, 2019, 9, 618.	1.0	4
228	Mechanofluorochromic Material toward a Recoverable Microscale Force Sensor. Advanced Materials Interfaces, 2022, 9, .	1.9	4
229	Synthesis and electronic properties of terthienyls β-substituted by (thienyl)cyanovinylene groups. Tetrahedron Letters, 2010, 51, 4117-4120.	0.7	3
230	Indenopyrans – synthesis and photoluminescence properties. Beilstein Journal of Organic Chemistry, 2016, 12, 825-834.	1.3	3
231	3D conjugated systems based on a twisted quaterthiophene core as hole-transporting materials. Tetrahedron Letters, 2016, 57, 3945-3948.	0.7	2
232	Structure-properties relationships in triarylamine-based push-pull systems-C60 dyads as active material for single-material organic solar cells. Dyes and Pigments, 2021, 184, 108845.	2.0	2
233	A major step toward efficient and stable single-material organic solar cells. Science China Chemistry, 2019, 62, 1085-1086.	4.2	1
234	An attempt to synthesize a terthienyl-based analog of indacenedithiophene (IDT): unexpected synthesis of a naphtho[2,3- <i>b</i>)thiophene derivative. RSC Advances, 2021, 11, 9894-9900.	1.7	1

#	Article	IF	CITATIONS
235	Mass spectrometry evidence for self-rigidification of ï€-conjugated oligomers containing 3,4-ethylenedioxythiophene groups using RRKM theory and internal energy calibration. European Journal of Mass Spectrometry, 2019, 25, 239-250.	0.5	0
236	Manipulation of the properties of molecular materials based on small push-pull systems. , 2017, , .		0
237	Inverted versus direct structure bulk heterojunction organic solar cells involving a triphenylamine-based small molecular donor. Studia Universitatis Babes-Bolyai Chemia, 2020, 65, 95-106.	0.1	0