Edward Sacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4036730/publications.pdf

Version: 2024-02-01

219 papers

8,414 citations

50276 46 h-index 84 g-index

220 all docs 220 docs citations

times ranked

220

10660 citing authors

#	Article	IF	CITATIONS
1	Ag NP catalysis of Cu ions in the preparation of AgCu NPs and the mechanism of their enhanced antibacterial efficacy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127831.	4.7	21
2	A Pragmatic Perspective of the Initial Stages of the Contact Killing of Bacteria on Copper-Containing Surfaces. Applied Microbiology, 2022, 2, 449-452.	1.6	3
3	Antimicrobial Properties of the Ag, Cu Nanoparticle System. Biology, 2021, 10, 137.	2.8	74
4	Dynamic behaviours and drying processes of water droplets impacting on superhydrophilic surfaces. Surface Engineering, 2021, 37, 1301-1307.	2.2	3
5	A facile route to prepare colorless Ag-Cu nanoparticle dispersions with elevated antibacterial effects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127116.	4.7	9
6	A Pragmatic Perspective of the Antibacterial Properties of Metal-Based Nanoparticles. Nanomaterials, 2021, 11, 3214.	4.1	2
7	Physicochemical surface characterizations of four dental CAD/CAM lithium disilicate-based glass ceramics on HF etching: An XPS study. Ceramics International, 2020, 46, 1411-1418.	4.8	23
8	Nitric oxide attachment to SPIONs: Demonstration of the covalent S NO bond in a nanodelivery system. Applied Surface Science, 2020, 521, 145959.	6.1	1
9	Destabilization of PVA-stabilized Ag NPs: color changes at low aqueous concentrations, induced by aggregation and coalescence. Materials Research Express, 2020, , .	1.6	5
10	Physicochemical Characterization of Polyvinyl Pyrrolidone: A Tale of Two Polyvinyl Pyrrolidones. ACS Omega, 2020, 5, 30461-30467.	3.5	30
11	Synthesis of amorphous SiO ₂ nanowires by one-step low temperature hydrothermal process. Materials Research Express, 2019, 6, 115202.	1.6	3
12	The physicochemical characterization of the Cu nanoparticle surface, and of its evolution on atmospheric exposure: Application to antimicrobial bandages for wound dressings. Applied Surface Science, 2019, 473, 25-30.	6.1	12
13	Comment on a€œ <scp>i</scp> ntensity modulation of the Shirley background of the <scp>C</scp> r3p spectra with photon energies around the <scp>C</scp> r2p edgeâ€, by <scp>A H</scp> erreraâ€ <scp>G</scp> omez, <scp>D C</scp> abreraâ€ <scp>G</scp> erman, <scp>A D D</scp> utol et al, <scp>S</scp> urface <scp>I</scp> nterface <scp>A</scp> nal, 2018;50:246â€252. Surface and Interface	1.8	3
14	Short communication: Unexpected findings on the physicochemical characterization of the silver nanoparticle surface. Applied Surface Science, 2018, 428, 1079-1081.	6.1	8
15	A facile method to prepare mechanically durable super slippery polytetrafluoroethylene coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 556, 99-105.	4.7	28
16	Improving the Mechanical Durability of Superhydrophobic Coating by Deposition onto a Mesh Structure. Materials Research Express, 2018, 5, 065521.	1.6	4
17	Characterization of endotoxins on orthopaedic fixation screws, using physicochemical surface analyses. Journal of Orthopaedic Research, 2017, 35, 240-247.	2.3	1
18	Improved adhesion of Ag NPs to the polyethylene terephthalate surface via atmospheric plasma treatment and surface functionalization. Applied Surface Science, 2017, 411, 411-418.	6.1	38

#	Article	IF	CITATIONS
19	PtRu Alloy Nanoparticles I. Physicochemical Characterizations of Structures Formed as a Function of the Type of Deposition and Their Evolutions on Annealing. Journal of Physical Chemistry C, 2017, 121, 23104-23119.	3.1	13
20	PtRu Alloy Nanoparticles. 2. Chemical and Electrochemical Surface Characterization for Methanol Oxidation. Journal of Physical Chemistry C, 2017, 121, 23120-23128.	3.1	15
21	Preparation of largeâ€scale, durable, superhydrophobic PTFE films using rough glass templates. Surface and Interface Analysis, 2017, 49, 1422-1430.	1.8	14
22	Physicochemical Characterizations of Nanoparticles Used for Bioenergy and Biofuel Production. Green Chemistry and Sustainable Technology, 2017, , 173-191.	0.7	2
23	Washing effect on superparamagnetic iron oxide nanoparticles. Data in Brief, 2016, 7, 1296-1301.	1.0	12
24	A comparative physicochemical, morphological and magnetic study of silane-functionalized superparamagnetic iron oxide nanoparticles prepared by alkaline coprecipitation. International Journal of Biochemistry and Cell Biology, 2016, 75, 203-211.	2.8	28
25	Repelling hot water from superhydrophobic surfaces based on carbon nanotubes. Journal of Materials Chemistry A, 2015, 3, 16953-16960.	10.3	70
26	Surface Chemistry of Bacteriophage and Laser Ablated Nanoparticle Complexes for Pathogen Detection. Journal of Physical Chemistry C, 2015, 119, 14375-14382.	3.1	8
27	X-ray photoelectron spectroscopic and morphologic studies of Ru nanoparticles deposited onto highly oriented pyrolytic graphite. Applied Surface Science, 2015, 355, 279-289.	6.1	30
28	Human Alveolar Epithelial Cell Responses to Core–Shell Superparamagnetic Iron Oxide Nanoparticles (SPIONs). Langmuir, 2015, 31, 3829-3839.	3.5	18
29	Durable superhydrophobic PTFE films through the introduction of micro- and nanostructured pores. Applied Surface Science, 2015, 339, 151-157.	6.1	60
30	Protein Corona Formation on Magnetite Nanoparticles: Effects of Culture Medium Composition, and Its Consequences on Superparamagnetic Nanoparticle Cytotoxicity. Journal of Biomedical Nanotechnology, 2015, 11, 828-840.	1.1	18
31	Nanoscale surface characterization of biphasic calcium phosphate, with comparisons to calcium hydroxyapatite and \hat{I}^2 -tricalcium phosphate bioceramics. Journal of Colloid and Interface Science, 2014, 420, 182-188.	9.4	58
32	Bacteriophages: biosensing tools for multi-drug resistant pathogens. Analyst, The, 2014, 139, 1224.	3.5	59
33	How to repel hot water from a superhydrophobic surface?. Journal of Materials Chemistry A, 2014, 2, 10639-10646.	10.3	62
34	Surface Plasmon Resonance Determination of the Binding Mechanisms of <scp>I</scp> -Cysteine and Mercaptoundecanoic Acid on Gold. Journal of Physical Chemistry C, 2013, 117, 6712-6718.	3.1	18
35	The differential detection of methicillin-resistant, methicillin-susceptible and borderline oxacillin-resistant Staphylococcus aureus by surface plasmon resonance. Biosensors and Bioelectronics, 2013, 49, 334-340.	10.1	35
36	X-ray Photoelectron Spectroscopic and Transmission Electron Microscopic Characterizations of Bacteriophage–Nanoparticle Complexes for Pathogen Detection. Journal of Physical Chemistry C, 2013, 117, 20656-20665.	3.1	45

#	Article	IF	Citations
37	Coreâ€"shell nanoparticles as prodrugs: Possible cytotoxicological and biomedical impacts of batch-to-batch inconsistencies. Journal of Colloid and Interface Science, 2013, 389, 292-297.	9.4	34
38	Strategies for the Immobilization of Bacteriophages on Gold Surfaces Monitored by Surface Plasmon Resonance and Surface Morphology. Journal of Physical Chemistry C, 2013, 117, 6686-6691.	3.1	31
39	The effect of ethylene oxide sterilization on the surface chemistry and <i>in vitro</i> cytotoxicity of several kinds of chitosan. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101, 1444-1455.	3.4	33
40	Nitric Oxide Delivery by Core/Shell Superparamagnetic Nanoparticle Vehicles with Enhanced Biocompatibility. Langmuir, 2012, 28, 12879-12885.	3.5	53
41	Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages. Biosensors and Bioelectronics, 2012, 37, 24-29.	10.1	186
42	Formation of FePt Alloy Nanoparticles on Highly Oriented Pyrolytic Graphite: A Morphological and In Situ X-ray Photoelectron Spectroscopic Study. Journal of Physical Chemistry C, 2012, 116, 6902-6912.	3.1	11
43	Comment on "The mathematical origins of the kinetic compensation effect―Parts 1 and 2 by P. J. Barrie, Phys. Chem. Chem. Phys., 2012, 14, 318 and 327. Physical Chemistry Chemical Physics, 2012, 14, 8232.	2.8	34
44	<i>In vitro</i> biocompatibility assessment of functionalized magnetite nanoparticles: Biological and cytotoxicological effects. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1637-1646.	4.0	40
45	X-ray Photoelectron Spectroscopic Studies of Pd Nanoparticles Deposited onto Highly Oriented Pyrolytic Graphite: Interfacial Interaction, Spectral Asymmetry, and Size Determination. Journal of Physical Chemistry C, 2011, 115, 7896-7905.	3.1	46
46	Surface Chemistry and Thermal Stability of Fe Nanoparticles Annealed under Ultrahigh-Vacuum Conditions. Journal of Physical Chemistry C, 2011, 115, 12972-12980.	3.1	5
47	pH-Triggered Doxorubicin Delivery Based on Hollow Nanoporous Silica Nanoparticles with Free-Standing Superparamagnetic Fe ₃ O ₄ Cores. Journal of Physical Chemistry C, 2011, 115, 1436-1443.	3.1	62
48	Multi-Excitation Entropy, Entropy–Enthalpy Relations, and their Impact on Catalysis. Catalysis Letters, 2011, 141, 954-957.	2.6	15
49	The Effect of Deposition Rate on the Morphology of Fe Nanoparticles on Highly Oriented Pyrolytic Graphite, As Studied by X-ray Photoelectron Spectroscopy and Atomic Force Microscopy. Journal of Physical Chemistry C, 2011, 115, 1524-1534.	3.1	1
50	Chemical and morphological characterizations of CoNi alloy nanoparticles formed by co-evaporation onto highly oriented pyrolytic graphite. Journal of Colloid and Interface Science, 2010, 350, 16-21.	9.4	17
51	Confirmation of X-ray Photoelectron Spectroscopy Peak Attributions of Nanoparticulate Iron Oxides, Using Symmetric Peak Component Line Shapes. Journal of Physical Chemistry C, 2010, 114, 10711-10718.	3.1	168
52	Asymmetries in Transition Metal XPS Spectra: Metal Nanoparticle Structure, and Interaction with the Graphene-Structured Substrate Surface. Langmuir, 2010, 26, 3807-3814.	3.5	39
53	Stabilization of platinum nanoparticles on graphene by non-invasive functionalization. Carbon, 2009, 47, 2233-2238.	10.3	16
54	The unexpected formation of Aul̂ +–Sil̂ − by the resonance neutralization of Ar+ during the low energy bombardment of Au nanoparticles on c-Si. Applied Surface Science, 2009, 255, 6870-6874.	6.1	0

#	Article	IF	CITATIONS
55	Characterization and Oxidation of Fe Nanoparticles Deposited onto Highly Oriented Pyrolytic Graphite, Using X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2009, 113, 6418-6425.	3.1	37
56	Templateâ€and Surfactantâ€free Room Temperature Synthesis of Selfâ€Assembled 3D Pt Nanoflowers from Singleâ€Crystal Nanowires. Advanced Materials, 2008, 20, 571-574.	21.0	232
57	The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment. Carbon, 2008, 46, 196-205.	10.3	494
58	Formation of a Porous Platinum Nanoparticle Froth for Electrochemical Applications, Produced without Templates, Surfactants, or Stabilizers. Chemistry of Materials, 2008, 20, 4677-4681.	6.7	27
59	A Facile Route for the Self-Organized High-Density Decoration of Pt Nanoparticles on Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 11717-11721.	3.1	46
60	Strongly Enhanced Interaction between Evaporated Pt Nanoparticles and Functionalized Multiwalled Carbon Nanotubes via Plasma Surface Modifications:  Effects of Physical and Chemical Defects. Journal of Physical Chemistry C, 2008, 112, 4075-4082.	3.1	79
61	Adhesion to Tooth Structure Mediated by Contemporary Bonding Systems. Dental Clinics of North America, 2007, 51, 677-694.	1.8	23
62	Synthesis and Characterization of Platinum Nanowire–Carbon Nanotube Heterostructures. Chemistry of Materials, 2007, 19, 6376-6378.	6.7	100
63	Structure and Morphology of Co Nanoparticles Deposited onto Highly Oriented Pyrolytic Graphite. Journal of Physical Chemistry C, 2007, 111, 17200-17205.	3.1	25
64	X-ray Photoelectron Spectroscopic Analysis of Pt Nanoparticles on Highly Oriented Pyrolytic Graphite, Using Symmetric Component Line Shapes. Journal of Physical Chemistry C, 2007, 111, 565-570.	3.1	90
65	Core/Shell Formation of Gold Nanoparticles Induced on Exposure toN,N-Dimethylformamide:  Chemical and Morphological Changes. Journal of Physical Chemistry C, 2007, 111, 14320-14326.	3.1	1
66	Accurate Assembly and Size Control of Cu Nanoparticles into Nanowires by Contact Atomic Force Microscope-Based Nanopositioning. Journal of Physical Chemistry C, 2007, 111, 10105-10109.	3.1	5
67	Carbon 1s X-ray Photoemission Line Shape Analysis of Highly Oriented Pyrolytic Graphite:  The Influence of Structural Damage on Peak Asymmetry. Langmuir, 2006, 22, 860-862.	3.5	145
68	XPS Demonstration of Ï€â^'Ï€ Interaction between Benzyl Mercaptan and Multiwalled Carbon Nanotubes and Their Use in the Adhesion of Pt Nanoparticles. Chemistry of Materials, 2006, 18, 5033-5038.	6.7	138
69	Evidence of the Interaction of Evaporated Pt Nanoparticles with Variously Treated Surfaces of Highly Oriented Pyrolytic Graphite. Journal of Physical Chemistry B, 2006, 110, 8348-8356.	2.6	55
70	Platinum Nanoparticle Interaction with Chemically Modified Highly Oriented Pyrolytic Graphite Surfaces. Chemistry of Materials, 2006, 18, 1811-1816.	6.7	42
71	Electrophoretic separation of aniline derivatives using fused silica capillaries coated with acid treated single-walled carbon nanotubes. Journal of Chromatography A, 2005, 1074, 187-194.	3.7	70
72	Microscale chemical and electrostatic surface patterning of Dow Cyclotene by N2 plasma. Applied Surface Science, 2005, 242, 419-427.	6.1	1

#	Article	IF	Citations
73	The surface modification of nanoporous SiOx thin films with a monofunctional organosilane. Applied Surface Science, 2005, 252, 1197-1201.	6.1	13
74	The creation of Au nanoscale surface patterns by the low energy Ar + beam irradiation of Au clusters evaporated onto a SiO2/Si surface. Applied Physics A: Materials Science and Processing, 2005, 80, 575-579.	2.3	4
75	Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution. Applied Physics A: Materials Science and Processing, 2005, 80, 753-758.	2.3	179
76	A mediatorless biosensor for putrescine using multiwalled carbon nanotubes. Analytical Biochemistry, 2005, 336, 305-311.	2.4	49
77	Photoacoustic Fourier transform infrared spectroscopy of nanoporous SiOxâ [•] Si thin films with varying porosities. Journal of Applied Physics, 2005, 98, 114310.	2.5	12
78	Controlled Chemical Functionalization of Multiwalled Carbon Nanotubes by Kiloelectronvolt Argon lon Treatment and Air Exposure. Langmuir, 2005, 21, 8539-8545.	3.5	70
79	Oxidation, Deformation, and Destruction of Carbon Nanotubes in Aqueous Ceric Sulfate. Journal of Physical Chemistry B, 2005, 109, 1400-1407.	2.6	38
80	Functionalization of Multiwalled Carbon Nanotubes by Mild Aqueous Sonication. Journal of Physical Chemistry B, 2005, 109, 7788-7794.	2.6	129
81	Nanocalorimetric investigation of light-induced metastable defects in hydrogenated amorphous silicon. Journal of Non-Crystalline Solids, 2005, 351, 3630-3633.	3.1	1
82	Spectroscopic Evidence for Ï€â⁻'Ï€ Interaction between Poly(diallyl dimethylammonium) Chloride and Multiwalled Carbon Nanotubes. Journal of Physical Chemistry B, 2005, 109, 4481-4484.	2.6	265
83	Surface Diffusion and Coalescence of Mobile Metal Nanoparticles. Journal of Physical Chemistry B, 2005, 109, 9703-9711.	2.6	343
84	Interaction of Evaporated Nickel Nanoparticles with Highly Oriented Pyrolytic Graphite:Â Back-bonding to Surface Defects, as Studied by X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 19329-19334.	2.6	37
85	Excimer laser manipulation and pattering of gold nanoparticles on the SiO2/Si surface. Journal of Applied Physics, 2004, 95, 5023-5026.	2.5	23
86	Optical breakdown processing: Influence of the ambient gas on the properties of the nanostructured Si-based layers formed. Journal of Applied Physics, 2004, 95, 5722-5728.	2.5	14
87	Surface plasmons in Drude metals. Surface Science, 2004, 569, 47-55.	1.9	23
88	The early stages of silicon surface damage induced by pulsed CO2 laser radiation: an AFM study. Applied Surface Science, 2004, 222, 365-373.	6.1	8
89	Stabilization and Size Control of Gold Nanoparticles during Laser Ablation in Aqueous Cyclodextrins. Journal of the American Chemical Society, 2004, 126, 7176-7177.	13.7	335
90	Surface Chemistry of Gold Nanoparticles Produced by Laser Ablation in Aqueous Media. Journal of Physical Chemistry B, 2004, 108, 16864-16869.	2.6	564

#	Article	IF	Citations
91	A spectroscopic study of CNx formation by the keV N2+ irradiation of highly oriented pyrolytic graphite surfaces. Surface Science, 2003, 531, 185-198.	1.9	19
92	The manipulation of Cu cluster dimensions on highly oriented pyrolytic graphite surfaces by low energy ion beam irradiation. Surface Science, 2003, 536, 67-74.	1.9	11
93	The applicability of angle-resolved XPS to the characterization of clusters on surfaces. Surface Science, 2003, 536, 139-144.	1.9	22
94	Cu cluster adhesion enhancement on the modified Dow Cyclotene surface through low energy N2+ beam irradiation at grazing angles. Applied Surface Science, 2003, 207, 1-5.	6.1	8
95	Local surface cleaning and cluster assembly using contact mode atomic force microscopy. Applied Surface Science, 2003, 210, 158-164.	6.1	9
96	The quantitative correlation of nanoscopic and macroscopic measurements of adhesion: copper clusters on a low-permittivity polymer. Journal of Physics Condensed Matter, 2002, 14, 7097-7100.	1.8	7
97	s–p Hybridization in highly oriented pyrolytic graphite and its change on surface modification, as studied by X-ray photoelectron and Raman spectroscopies. Surface Science, 2002, 504, 125-137.	1.9	111
98	The surface modification of Dow Cyclotene by low energy N2+ beams and its effect on the adhesion of evaporated Cu films. Applied Surface Science, 2002, 195, 202-213.	6.1	4
99	Ar+-induced surface defects on HOPG and their effect on the nucleation, coalescence and growth of evaporated copper. Surface Science, 2002, 516, 43-55.	1.9	61
100	Initial- and final-state effects on metal cluster/substrate interactions, as determined by XPS: copper clusters on Dow Cyclotene and highly oriented pyrolytic graphite. Applied Surface Science, 2002, 195, 187-195.	6.1	60
101	The Study of Copper Clusters on Dow Cyclotene and Their Stability. , 2002, , 97-105.		5
102	Coalescence kinetics of copper clusters on highly oriented pyrolytic graphite and Dow Cyclotene, as determined by x-ray photoelectron spectroscopy. Journal of Applied Physics, 2001, 90, 4768-4771.	2.5	25
103	Structural changes in amorphous silicon studied by X-ray photoemission spectroscopy: a phenomenon independent of the Staebler–Wronski effect?. Journal of Non-Crystalline Solids, 2001, 282, 165-172.	3.1	10
104	The estimation of the average dimensions of deposited clusters from XPS emission intensity ratios. Applied Surface Science, 2001, 173, 134-139.	6.1	39
105	Nitrogen plasma treatment of the dow Cyclotene 3022 surface and its reaction with evaporated copper. Applied Surface Science, 2001, 177, 85-95.	6.1	31
106	The enhancement of the adhesion of copper layers to Dow Cyclotene 3022 through metal sputtering. Applied Surface Science, 2001, 180, 200-208.	6.1	12
107	The copper/plasma-polymerized octofluorocyclobutane interface. Polymer, 2001, 42, 4299-4307.	3.8	23
108	A photoacoustic FTIRS study of the chemical modifications of human dentin surfaces:. Biomaterials, 2001, 22, 793-797.	11.4	74

#	Article	IF	Citations
109	A photoacoustic FTIRS study of the chemical modifications of human dentin surfaces: I. Demineralization. Biomaterials, 2001, 22, 787-792.	11.4	48
110	Argon ion treatment of the Dow Cyclotene 3022 surface and its effect on the adhesion of evaporated copper. Applied Surface Science, 2001, 173, 30-39.	6.1	21
111	Quantitative assessment of surface roughness as measured by AFM: application to polished human dentin. Applied Surface Science, 2001, 183, 205-215.	6.1	45
112	Fluorine incorporation in plasma-polymerized octofluorocyclobutane, hexafluoropropylene and trifluoroethylene. Polymer, 2001, 42, 3761-3769.	3.8	77
113	A tapping mode AFM study of collapse and denaturation in dentinal collagen. Dental Materials, 2001, 17, 284-288.	3.5	63
114	The surface structure of Dow Cyclotene 3022, as determined by photoacoustic FTIR, confocal Raman and photoelectron spectroscopies. Applied Surface Science, 2000, 165, 15-22.	6.1	22
115	Interfacial reaction between evaporated copper and Dow Cyclotene 3022. Applied Surface Science, 2000, 165, 116-126.	6.1	24
116	The modeling of excimer laser particle removal from hydrophilic silicon surfaces. Journal of Applied Physics, 2000, 87, 3618-3627.	2.5	44
117	The effects of hydrogen bonds on the adhesion of inorganic oxide particles on hydrophilic silicon surfaces. Journal of Applied Physics, 1999, 86, 1744-1748.	2.5	56
118	The cleaning and thiolation of commercial titanium for use in dental prostheses. Applied Surface Science, 1999, 143, 238-244.	6.1	4
119	Plasma Surface Modification of Fluoropolymers Studied by ToF-SIMS. Plasmas and Polymers, 1999, 4, 97-111.	1.5	5
120	The Surface Modification of Pure Cellulose Paper Induced by Low-Pressure Nitrogen Plasma Treatment. Plasmas and Polymers, 1998, 3, 61-76.	1.5	37
121	Photodegradation of teflon AF1600 during XPS analysis. Journal of Applied Polymer Science, 1998, 70, 1201-1207.	2.6	13
122	Moisture-dependent renaturation of collagen in phosphoric acid etched human dentin., 1998, 42, 549-553.		36
123	Laser-induced metal-organic chemical vapor deposition (MOCVD) of Cu(hfac)(TMVS) on amorphous Teflon AF1600: an XPS study of the interface. Applied Surface Science, 1998, 126, 198-204.	6.1	15
124	X-ray photoelectron spectroscopy studies of the evaporated aluminum/corona-treated polyethylene terephthalate interface. Applied Surface Science, 1998, 135, 339-349.	6.1	41
125	Angle-resolved x-ray photoelectron spectroscopy comparison of copper/Teflon AF1600 and aluminum/Kapton metal diffusion. Journal of Applied Physics, 1998, 83, 108-111.	2.5	18
126	Laser induced deposition of tungsten and copper. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 45, 200-207.	3.5	8

#	Article	IF	CITATIONS
127	Copper metallization of Teflon AF1600, using evaporation and sputtering, for multilevel interconnect devices. Microelectronic Engineering, 1997, 33, 217-221.	2.4	14
128	CO ₂ laser-assisted particle removal from silicon surfaces. Canadian Journal of Physics, 1996, 74, 95-99.	1.1	1
129	CO2laserâ€essisted removal of submicron particles from solid surfaces. Journal of Applied Physics, 1996, 79, 2857-2862.	2.5	39
130	Angle-resolved XPS study of plasma-treated teflon PFA surfaces. Surface and Interface Analysis, 1995, 23, 99-104.	1.8	47
131	Excimer laser-induced deposition of copper from Cu(hfac) (TMVS). Applied Surface Science, 1995, 86, 509-513.	6.1	23
132	A multitechnique analysis of the outermost layers of the Teflon PFA surface. Applied Surface Science, 1995, 84, 227-235.	6.1	12
133	Metallization of polythiophenes II. Interaction of vapor-deposited Cr, V and Ti with poly(3-hexylthiophene) (P3HT). Synthetic Metals, 1995, 72, 73-80.	3.9	44
134	Metallization of polythiophenes III. Interaction of vapor-deposited Cu and Ni with poly(3-octyloxy-methylthiophene) (P3O4MT). Synthetic Metals, 1995, 72, 81-88.	3.9	10
135	Metallization of polythiophenes IV. Interaction of vapor-deposited Cu and Ni with poly[3-(1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluorononyl)thiophene] (P3TT). Synthetic Metals, 1995, 75, 195-200.	3.9	9
136	A theoretical investigation of the interactions between thiophene and vanadium, chromium, copper, and gold. Journal of Chemical Physics, 1995, 102, 6153-6158.	3.0	71
137	Letter to the Editor. Journal of Dental Research, 1994, 73, 584-585.	5. 2	1
138	Metallization of conjugated polymers: x-ray photoelectron spectroscopy and density functional theory. , 1994, , .		0
139	Fluoropolymer surface modification for enhanced evaporated metal adhesion. Journal of Adhesion Science and Technology, 1994, 8, 1129-1141.	2.6	63
140	The Effect of Conditioning on Adhesion to Human Dentin. Journal of Adhesion, 1994, 47, 133-149.	3.0	9
141	Metallization of Teflon PFA. I. Interactions of evaporated Cr and Al measured by xâ€ray photoelectron spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 29-34.	2.1	41
142	The Au/Si(100) (1 \tilde{A} — 1)-H interface, as studied by XPS and AFM: a model of the interfacial reaction. Applied Surface Science, 1994, 78, 399-411.	6.1	9
143	Electronegativity-based predictions on the fitting of the C $1\mathrm{s}$ X-ray photoelectron spectrum of PMMA. Applied Surface Science, 1994 , 74 , 129 - 130 .	6.1	5
144	Fluoropolymer metallization for microelectronic applications. Progress in Surface Science, 1994, 47, 273-300.	8.3	125

#	Article	IF	Citations
145	Metallization of polythiophenes I. Interaction of vapor-deposited Cu, Ag and Au with poly(3-hexylthiophene) (P3HT). Synthetic Metals, 1994, 66, 209-215.	3.9	78
146	Metallization of Teflon PFA. II. Interactions of Ti, Ag, and Au measured by xâ€ray photoelectron spectroscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 807-812.	2.1	25
147	X-ray photoelectron diffraction and spectroscopy of sputter-deposited or evaporated coinage metals on Si(100). Applied Surface Science, 1993, 64, 205-213.	6.1	7
148	Reply to "comment of M.P. Seah and P.J. Cumpson on â€~spectral noise removal by digital filtering and its application to surface analysis' by K. Piyakis and E. Sacherâ€. Applied Surface Science, 1993, 64, 361-364.	6.1	4
149	Amorphization of câ€Si by the sputter deposition of Au studied by xâ€ray photoelectron diffraction. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 1002-1005.	2.1	4
150	Sâ€passivated InP (100)â€(1×1) surface prepared by a wet chemical process. Applied Physics Letters, 1992, 60, 2669-2671.	3.3	117
151	Comment on   Infrared study of the Siâ€H stretching band inaâ€SiC:H'' [J. Appl. Phys.69, 7805 (1991 of Applied Physics, 1992, 71, 4091-4091.)]. Journal 2.5	4
152	Spectral noise removal by digital filtering and its application to surface analysis. Applied Surface Science, 1992, 55, 159-164.	6.1	10
153	Ultraviolet photoelectron spectroscopic study of the surface etching of air-oxidized hydrogenated amorphous silicon by aqueous hydrofluoric acid solution. Applied Surface Science, 1992, 59, 239-243.	6.1	5
154	Band bending and Fermi level shifts in phosphorus-doped hydrogenated amorphous silicon studied by X-ray photoelectron spectroscopy. Surface Science, 1991, 258, 190-196.	1.9	9
155	Oxidation of amorphous NiZr sputtered films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 134, 1021-1024.	5.6	3
156	Silicon-carbon reaction provoked by the sputter cleaning of lightly contaminated crystalline silicon. Applied Surface Science, 1991, 52, 71-76.	6.1	6
157	Comment on   Mechanism of HF etching of silicon surfaces: A theoretical understanding of hydrogen passivation''. Physical Review Letters, 1991, 66, 1647-1647.	7.8	16
158	The importance of peripheral topics: the example of polymer metallization. IEEE Electrical Insulation Magazine, 1991, 7, 29-31.	0.8	0
159	X-Ray photoelectron study of the plasma fluorination of lignocellulose. Applied Surface Science, 1990, 44, 165-169.	6.1	45
160	Ga configurations in hydrogenated amorphous silicon as studied by x-ray photoemission spectroscopy. Physical Review B, 1990, 42, 5186-5190.	3.2	3
161	Multiplet contributions to the2p32x-ray photoemission spectrum of CuO. Physical Review B, 1989, 39, 1461-1464.	3.2	16
162	Relationship between Auger and autoionization processes. Physical Review B, 1989, 39, 8242-8246.	3.2	11

#	Article	IF	Citations
163	X-ray photoelectron spectroscopy studies of aging effects on the surface of Au – a-Si:H – Sb-Cr Schottky diodes. Canadian Journal of Physics, 1989, 67, 365-369.	1.1	2
164	Supersaturated substitutional Ga+ion implanted in silicon studied by xâ€ray photoelectron spectroscopy. Applied Physics Letters, 1989, 54, 2665-2667.	3.3	5
165	The ÏfI inductive substituent parameter as a measure of electronegativity, x. Journal of Electron Spectroscopy and Related Phenomena, 1989, 48, 375-378.	1.7	6
166	X-ray photoelectron spectroscopic evidence for Culll in superconducting YBa2Cu3O7 ceramic. Journal of Electron Spectroscopy and Related Phenomena, 1989, 48, C7-C12.	1.7	13
167	X-ray photoelectron spectra of antimony oxides. Applied Surface Science, 1989, 40, 175-177.	6.1	83
168	The presence of silane gas in plasma-deposited hydrogenated amorphous silicon. Surface Science, 1989, 222, L831-L836.	1.9	3
169	Electronegativity effects in chemical sputtering. Surface Science, 1989, 220, L679-L686.	1.9	3
170	Surface reaction during the argon ion sputter cleaning of surface oxidized crystalline silicon (111). Surface Science, 1989, 217, L377-L381.	1.9	32
171	Binding energy correlations in lanthanide 4d auger and autoionization spectra. Journal of Electron Spectroscopy and Related Phenomena, 1988, 46, 103-109.	1.7	2
172	A comparison of electronegativity series. Journal of Electron Spectroscopy and Related Phenomena, 1988, 46, 173-177.	1.7	17
173	The surface characterization of the atmospheric contamination of hydrogenated amorphous silicon. Solar Energy Materials and Solar Cells, 1988, 17, 17-23.	0.4	4
174	Kinetics of the room-temperature air oxidation of hydrogenated amorphous silicon and crystalline silicon. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1988, 58, 385-388.	0.6	26
175	Unusual roomâ€ŧemperature intermixing and oxidation in copper deposited on a fluorinated amorphous silicon system. Applied Physics Letters, 1988, 52, 191-193.	3.3	15
176	Manifestation of substituent effects in the Auger parameter. Physical Review B, 1988, 38, 11135-11139.	3.2	3
177	Evolution of the vibrational spectra of hydrogenated-amorphous-silicon thin films having columnar morphology. Physical Review B, 1987, 35, 1260-1266.	3.2	10
178	Photoacoustic infrared identification of Nî—,Hn vibrations in hydrogenated amorphous silicon nitride. Spectrochimica Acta Part A: Molecular Spectroscopy, 1987, 43, 1189-1190.	0.1	5
179	The correlation of Nî—,Hn i.r. frequencies in amines. Spectrochimica Acta Part A: Molecular Spectroscopy, 1987, 43, 747-751.	0.1	12
180	The density and composition of polyimide surface layers. Journal of Applied Polymer Science, 1986, 31, 583-587.	2.6	6

#	Article	lF	Citations
181	Predictions of Siî—, Hn stretching vibrations on atmospheric contamination of hydrogenated amorphous silicon. Solar Energy Materials and Solar Cells, 1986, 13, 441-446.	0.4	10
182	A comparison of group electronegativity and field effects. Tetrahedron Letters, 1986, 27, 4683-4686.	1.4	3
183	Comments on â€~â€~Electronic structure of hydrogenated and unhydrogenated amorphousSiNx(0â‰ ¤ â‰ \$.6): A photoemission study''. Physical Review B, 1986, 33, 2845-2846.	3.2	9
184	Ligand-field theory of inductive effects in the photoelectron spectra of transition-metal compounds. Physical Review B, 1986, 34, 5130-5135.	3.2	13
185	Infrared investigations of hydrogenated amorphous silicon. I. Inductive spectral shifts as predicted from monomer data. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1985, 51, 285-293.	0.6	11
186	Infrared investigations of hydrogenated amorphous silicon. II. The existence of polysilane, (SiH ₂) _n . The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1985, 51, 295-299.	0.6	5
187	Water permeation in polymer films. VII. Polyimide/Teflon FEP laminates. Journal of Applied Polymer Science, 1985, 30, 1393-1398.	2.6	3
188	Inductive effects in transition-metal-compound core-electron satellite spectra. Physical Review B, 1985, 31, 4029-4030.	3.2	5
189	Progress in amorphous-silicon photovoltaic-device research. Canadian Journal of Physics, 1985, 63, 786-797.	1.1	6
190	The influence of inductive effects on ESCA core binding energies. Journal of Electron Spectroscopy and Related Phenomena, 1984, 33, 369-374.	1.7	8
191	A nuclear scattering evaluation of organometallic bonding in the adhesion of metallization to polymers. Journal of Colloid and Interface Science, 1984, 97, 410-422.	9.4	16
192	Time-dependent changes in the Siî—,Hn vibrational spectrum of amorphous silicon, a-Si:H. Journal of Non-Crystalline Solids, 1984, 66, 93-98.	3.1	12
193	Surface contributions to the two-layer structure in the plasma deposition of a-Si: H. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1984, 49, L47-L52.	0.6	20
194	The Determination of Trace Inorganic Contaminants in Polyimides. IEEE Transactions on Electrical Insulation, 1983, EI-18, 369-373.	0.8	10
195	Water permeation in polymer films. vi. boundary layer resistance to permeation. Journal of Polymer Science, Polymer Letters Edition, 1983, 21, 111-113.	0.4	4
196	Water permeation in polymer films. V. Parylene D. Journal of Applied Polymer Science, 1983, 28, 1535-1537.	2.6	4
197	Fine-structure in the dielectric gamma relaxations of high- and low-density polyethylene. , 1983, , .		O
198	Water permeation of polymer films. IV. Teflon FEP. Journal of Applied Polymer Science, 1982, 27, 3893-3902.	2.6	16

#	Article	IF	Citations
199	Water permeation of polymer films. III. High-temperature polyimides. Journal of Applied Polymer Science, 1981, 26, 679-686.	2.6	71
200	Dielectric demonstration of crystalline and amorphous peaks in PCTFE. Journal of Polymer Science, Polymer Letters Edition, 1980, 18, 333-337.	0.4	2
201	An attempt to apply the equation for polymer life to the dielectric strength of polymers. Journal Physics D: Applied Physics, 1980, 13, L21-L24.	2.8	2
202	Water permeation of polymer films. I. Polyimide. Journal of Applied Polymer Science, 1979, 23, 2355-2364.	2.6	113
203	Mechanochemical aspects of repetitive impacts and sliding on polymers. Journal of Applied Polymer Science, 1979, 24, 1503-1514.	2.6	10
204	Water permeation of polymer films. II. Dual-mode absorption in teflon FEP. Journal of Applied Polymer Science, 1979, 24, 1997-2003.	2.6	18
205	Auger electron spectroscopy of deposited silane layers. Journal of Colloid and Interface Science, 1978, 67, 538-540.	9.4	32
206	Dielectric support for the glass transition in poly(vinyl fluoride). Journal of Polymer Science, Polymer Letters Edition, 1977, 15, 395-398.	0.4	2
207	The effect of voids on the sliding friction of polyimide film. Wear, 1976, 37, 15-20.	3.1	5
208	The interpretation of the stress intensity term in the 'equation for polymer life'. Journal Physics D: Applied Physics, 1976, 9, 1049-1051.	2.8	2
209	A computer implementation of frequency–temperature superposition for dynamic mechanical transformations. Journal of Applied Polymer Science, 1975, 19, 791-799.	2.6	5
210	A relation between toughness and the dynamic mechanical properties of polymer films. Journal of Applied Polymer Science, 1975, 19, 1421-1425.	2.6	36
211	Impact wear phenomena in thin polymer films. Wear, 1975, 32, 181-194.	3.1	16
212	The possibility of further imidization in polyimide film. Journal of Polymer Science, Polymer Physics Edition, 1974, 12, 629-632.	1.0	19
213	The transient current in polyimide film. Journal Physics D: Applied Physics, 1974, 7, L105-L106.	2.8	8
214	Kinetics of epoxy cure: 3. The systems bisphenol-A epoxides/dicy. Polymer, 1973, 14, 91-95.	3.8	69
215	The DC conductivity of poly(ethylene terephthalate) at elevated temperatures. Journal Physics D: Applied Physics, 1972, 5, L17-L18.	2.8	9
216	Kinetics of epoxy cure: 2. The system bisphenol-A diglycidyl ether/polyamide. Polymer, 1972, 13, 455-458.	3.8	88

#	Article	IF	CITATIONS
217	Kinetics of epoxy cure: (1) The system bisphenol-A diglycidyl ether/m-phenylene diamine. Polymer, 1971, 12, 335-343.	3.8	145
218	Carbonium Ions. XX. Acid-Catalyzed Cleavage Reactions. Journal of the American Chemical Society, 1965, 87, 5120-5123.	13.7	13
219	A theory of non-adiabatic electron-transfer in aqueous solution. Transactions of the Faraday Society, 1963, 59, 396.	0.9	11