Mohammad Mahmudur Rahman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4036298/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elucidating of potentially toxic elements contamination in topsoils around a copper smelter: Spatial distribution, partitioning and risk estimation. Environmental Geochemistry and Health, 2022, 44, 1795-1811.	3.4	16
2	Beryllium in contaminated soils: Implication of beryllium bioaccessibility by different exposure pathways. Journal of Hazardous Materials, 2022, 421, 126757.	12.4	12
3	Mechanistic insights of hexavalent chromium remediation by halloysite-supported copper nanoclusters. Journal of Hazardous Materials, 2022, 421, 126812.	12.4	17
4	Biochar and Compost-Based Integrated Nutrient Management: Potential for Carbon and Microbial Enrichment in Degraded Acidic and Charland Soils. Frontiers in Environmental Science, 2022, 9, .	3.3	2
5	Influences of soil pH, iron application and rice variety on cadmium distribution in rice plant tissues. Science of the Total Environment, 2022, 810, 152296.	8.0	28
6	Lead and other elements-based pollution in soil, crops and water near a lead-acid battery recycling factory in Bangladesh. Chemosphere, 2022, 290, 133288.	8.2	38
7	Adsorption–Desorption Behavior of Arsenate Using Single and Binary Iron-Modified Biochars: Thermodynamics and Redox Transformation. ACS Omega, 2022, 7, 101-117.	3.5	14
8	Health Risk Assessment From Heavy Metals Derived From Drinking Water and Rice, and Correlation With CKDu. Frontiers in Water, 2022, 3, .	2.3	4
9	The accumulation and distribution of arsenic species and selected metals in the saltmarsh halophyte, spiny rush (Juncus acutus). Marine Pollution Bulletin, 2022, 175, 113373.	5.0	6
10	Selenium Accumulation and Speciation in Chickpea (<i>Cicer arietinum</i>) Impacted by S in Soils: Potential for Biofortification. ACS Agricultural Science and Technology, 2022, 2, 135-143.	2.3	2
11	Removal of Toxic and Essential Nutrient Elements from Commercial Rice Brands Using Different Washing and Cooking Practices: Human Health Risk Assessment. International Journal of Environmental Research and Public Health, 2022, 19, 2582.	2.6	1
12	Editorial: Exposure Pathways, Characterization and Risk Assessment of Chemical Contaminants in the Food Chain. Frontiers in Environmental Science, 2022, 10, .	3.3	0
13	Magnetite Nanoparticles Loaded into Halloysite Nanotubes for Arsenic(V) Removal from Water. ACS Applied Nano Materials, 2022, 5, 12063-12076.	5.0	14
14	Soil washing of arsenic from mixed contaminated abandoned mine soils and fate of arsenic after washing. Chemosphere, 2022, 296, 134053.	8.2	12
15	Capability of Organically Modified Montmorillonite Nanoclay as a Carrier for Imidacloprid Delivery. ACS Agricultural Science and Technology, 2022, 2, 57-68.	2.3	9
16	Growth, Nutrient Accumulation, and Drought Tolerance in Crop Plants with Silicon Application: A Review. Sustainability, 2022, 14, 4525.	3.2	29
17	Growth, metal partitioning and antioxidant enzyme activities of mung beans as influenced by zinc oxide nanoparticles under cadmium stress. Crop and Pasture Science, 2022, 73, 862-876.	1.5	5
18	Distribution and ecological risk assessment of trace elements in the paddy soil-rice ecosystem of Punjab, Pakistan. Environmental Pollution, 2022, 307, 119492.	7.5	21

#	Article	IF	CITATIONS
19	Impact of Sulfur on Biofortification and Speciation of Selenium in Wheat Grain Grown in Selenium-Deficient Soils. Journal of Soil Science and Plant Nutrition, 2022, 22, 3243-3253.	3.4	2
20	Varietal differences influence arsenic and lead contamination of rice grown in mining impacted agricultural fields of Zamfara State, Nigeria. Chemosphere, 2022, 305, 135339.	8.2	5
21	Removal of arsenate from contaminated waters by novel zirconium and zirconium-iron modified biochar. Journal of Hazardous Materials, 2021, 409, 124488.	12.4	84
22	Arsenic geochemistry and mineralogy as a function of particle-size in naturally arsenic-enriched soils. Journal of Hazardous Materials, 2021, 403, 123931.	12.4	45
23	Bioaccessibility and speciation of arsenic in children's diets and health risk assessment of an endemic area in Bangladesh. Journal of Hazardous Materials, 2021, 403, 124064.	12.4	11
24	Arsenic exposure from food exceeds that from drinking water in endemic area of Bihar, India. Science of the Total Environment, 2021, 754, 142082.	8.0	42
25	Physico-chemical properties and reactive oxygen species generation by respirable coal dust: Implication for human health risk assessment. Journal of Hazardous Materials, 2021, 405, 124185.	12.4	34
26	Smectite-supported chain of iron nanoparticle beads for efficient clean-up of arsenate contaminated water. Journal of Hazardous Materials, 2021, 407, 124396.	12.4	11
27	Phytoremediation of palm oil mill effluent (POME) using water spinach (Ipomoea aquatica Forsk). Environmental Technology and Innovation, 2021, 21, 101260.	6.1	19
28	Organic farming: A prospect for food, environment and livelihood security in Indian agriculture. Advances in Agronomy, 2021, , 101-153.	5.2	10
29	Efficiency of Arsenic and Iron Removal Plants (AIRPs) for Groundwater Treatment in Rural Areas of Southwest Bangladesh. Water (Switzerland), 2021, 13, 354.	2.7	5
30	Reviewing the world's edible mushroom species: A new evidenceâ€based classification system. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1982-2014.	11.7	89
31	In situ decomposition of crop residues using lignocellulolytic microbial consortia: a viable alternative to residue burning. Environmental Science and Pollution Research, 2021, 28, 32416-32433.	5.3	6
32	Risk Analysis of COVIDâ€19 Infections in Kolkata Metropolitan City: A GISâ€Based Study and Policy Implications. GeoHealth, 2021, 5, e2020GH000368.	4.0	10
33	Synthesis of environmentally benign ultra-small copper nanoclusters-halloysite composites and their catalytic performance on contrasting azo dyes. Applied Surface Science, 2021, 546, 149122.	6.1	27
34	Antimonate sequestration from aqueous solution using zirconium, iron and zirconium-iron modified biochars. Scientific Reports, 2021, 11, 8113.	3.3	9
35	Transformation of Antimonate at the Biochar–Solution Interface. ACS ES&T Water, 2021, 1, 2029-2036.	4.6	10
36	Hydrogeochemical and ecological risk assessments of trace elements in the coastal surface water of the southern Caspian Sea. Environmental Monitoring and Assessment, 2021, 193, 452.	2.7	6

#	Article	IF	CITATIONS
37	Health Risk Assessment of Arsenic, Manganese, and Iron from Drinking Water for High School Children. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	6
38	Global patterns of accumulation and partitioning of metals in halophytic saltmarsh taxa: A phylogenetic comparative approach. Journal of Hazardous Materials, 2021, 414, 125515.	12.4	19
39	Secondary treatment phase of tertiary wastewater treatment works significantly reduces estrogenic load. Water Research, 2021, 200, 117257.	11.3	12
40	Exposure to Lead Nitrate Alters Growth and Haematological Parameters of Milkfish (Chanos chanos). Bulletin of Environmental Contamination and Toxicology, 2021, 107, 860-867.	2.7	9
41	Response of Iron and Cadmium on Yield and Yield Components of Rice and Translocation in Grain: Health Risk Estimation. Frontiers in Environmental Science, 2021, 9, .	3.3	9
42	Accumulation and distribution of metal(loid)s in the halophytic saltmarsh shrub, Austral seablite, Suaeda australis in New South Wales, Australia. Marine Pollution Bulletin, 2021, 169, 112475.	5.0	7
43	Towards adverse outcome pathways for metals in saltmarsh ecosystems – A review. Journal of Hazardous Materials, 2021, 416, 126252.	12.4	9
44	Influence of Iron Plaque on Accumulation and Translocation of Cadmium by Rice Seedlings. Sustainability, 2021, 13, 10307.	3.2	5
45	Mineralization of Farm Manures and Slurries for Successive Release of Carbon and Nitrogen in Incubated Soils Varying in Moisture Status under Controlled Laboratory Conditions. Agriculture (Switzerland), 2021, 11, 846.	3.1	10
46	Varietal variation and formation of iron plaques on cadmium accumulation in rice seedling. Environmental Advances, 2021, 5, 100075.	4.8	16
47	Biosynthesis of Tithonia diversifolia leaf mediated Zinc Oxide Nanoparticles loaded with flamboyant pods (Delonix regia) for the treatment of Methylene Blue Wastewater. Arabian Journal of Chemistry, 2021, 14, 103363.	4.9	23
48	Assessment of hypertension association with arsenic exposure from food and drinking water in Bihar, India. Ecotoxicology and Environmental Safety, 2021, 223, 112572.	6.0	11
49	Arsenic bioaccessibility and fractionation in abandoned mine soils from selected sites in New South Wales, Australia and human health risk assessment. Ecotoxicology and Environmental Safety, 2021, 223, 112611.	6.0	16
50	Concentrations of toxic elements and health risk assessment in arum grown in arsenic-contaminated areas of Bangladesh. Food Control, 2021, 129, 108240.	5.5	6
51	Distribution, contamination status and source of trace elements in the soil around brick kilns. Chemosphere, 2021, 263, 127882.	8.2	27
52	Translocation of Soil Arsenic towards Accumulation in Rice: Magnitude of Water Management to Minimize Health Risk. Water (Switzerland), 2021, 13, 2816.	2.7	4
53	Nitrogen Release in Soils Amended with Different Organic and Inorganic Fertilizers under Contrasting Moisture Regimes: A Laboratory Incubation Study. Agronomy, 2021, 11, 2163.	3.0	10
54	Kinetics, Isotherms and Adsorption–Desorption Behavior of Phosphorus from Aqueous Solution Using Zirconium–Iron and Iron Modified Biosolid Biochars. Water (Switzerland), 2021, 13, 3320.	2.7	9

#	Article	IF	CITATIONS
55	Bioaccumulation and Tolerance Indices of Cadmium in Wheat Plants Grown in Cadmium-Spiked Soil: Health Risk Assessment. Frontiers in Environmental Science, 2021, 9, .	3.3	0
56	Soil enzymes and microbial elemental stoichiometry as bio-indicators of soil quality in diverse cropping systems and nutrient management practices of Indian Vertisols. Applied Soil Ecology, 2020, 145, 103304.	4.3	53
57	Arsenic in Peruvian rice cultivated in the major rice growing region of Tumbes river basin. Chemosphere, 2020, 241, 125070.	8.2	17
58	Wheat is an emerging exposure route for arsenic in Bihar, India. Science of the Total Environment, 2020, 703, 134774.	8.0	31
59	Hollow Porous Silica Nanosphere with Single Large Pore Opening for Pesticide Loading and Delivery. ACS Applied Nano Materials, 2020, 3, 105-113.	5.0	33
60	Modified clays alter diversity and respiration profile of microorganisms in longâ€ŧerm hydrocarbon and metal co ontaminated soil. Microbial Biotechnology, 2020, 13, 522-534.	4.2	11
61	PET-microplastics as a vector for heavy metals in a simulated plant rhizosphere zone. Science of the Total Environment, 2020, 744, 140984.	8.0	123
62	Cadmium Immobilization in the Rhizosphere and Plant Cellular Detoxification: Role of Plant-Growth-Promoting Rhizobacteria as a Sustainable Solution. Journal of Agricultural and Food Chemistry, 2020, 68, 13497-13529.	5.2	31
63	Geochemical fractionation and mineralogy of metal(loid)s in abandoned mine soils: Insights into arsenic behaviour and implications to remediation. Journal of Hazardous Materials, 2020, 399, 123029.	12.4	29
64	Flow of arsenic between rice grain and water: Its interaction, accumulation and distribution in different fractions of cooked rice. Science of the Total Environment, 2020, 731, 138937.	8.0	63
65	Dynamics of maturity and stability indices during decomposition of biodegradable city waste using rapo-compost technology. Applied Soil Ecology, 2020, 155, 103670.	4.3	7
66	Arsenic fractionation in sediments and speciation in muscles of fish, Chrysichthys nigrodigitatus from a contaminated tropical Lagoon, Nigeria. Chemosphere, 2020, 256, 127134.	8.2	3
67	Toxicity of palm oil mill effluent on the early life stages of Nile tilapia (Oreochromis niloticus,) Tj ETQq1 1 0.7843	14_rgBT /O	verlock 10 T 19
68	Does soil organic carbon quality or quantity govern relative temperature sensitivity in soil aggregates?. Biogeochemistry, 2020, 148, 191-206.	3.5	17
69	Long-lasting effect of mercury contamination on the soil microbiota and its co-selection of antibiotic resistance. Environmental Pollution, 2020, 265, 115057.	7.5	19
70	Accumulation and partitioning of metals and metalloids in the halophytic saltmarsh grass, saltwater couch, Sporobolus virginicus. Science of the Total Environment, 2020, 713, 136576.	8.0	20
71	Novel bio-filtration method for the removal of heavy metals from municipal solid waste. Environmental Technology and Innovation, 2020, 17, 100619.	6.1	8
72	Geographical variation of cadmium in commercial rice brands in Bangladesh: Human health risk assessment. Science of the Total Environment, 2020, 716, 137049.	8.0	41

#	Article	IF	CITATIONS
73	Health risks from trace elements in muscles of some commonly available fish in Australia and India. Environmental Science and Pollution Research, 2020, 27, 21000-21012.	5.3	10
74	Potential Exposure to Arsenic and Other Elements from Rice in Bangladesh: Health Risk Index. , 2020, , 333-340.		1
75	Arsenic: Occurrence in Groundwater. , 2019, , 153-168.		19
76	Biocompatible functionalisation of nanoclays for improved environmental remediation. Chemical Society Reviews, 2019, 48, 3740-3770.	38.1	104
77	Thermophilic ligno-cellulolytic fungi: The future of efficient and rapid bio-waste management. Journal of Environmental Management, 2019, 244, 144-153.	7.8	16
78	Kinetic of the degradation of sulfanilic acid azochromotrop (SPADNS) by Fenton process coupled with ultrasonic irradiation or L-cysteine acceleration. Environmental Technology and Innovation, 2019, 15, 100380.	6.1	19
79	Nanobiopesticides: Composition and preparation methods. , 2019, , 69-131.		16
80	A Facile Synthesis of Hematite Nanorods from Rice Starch and Their Application to Pb(II) Ions Removal. ChemistrySelect, 2019, 4, 3730-3736.	1.5	10
81	Current and emerging methodologies for estimating carbon sequestration in agricultural soils: A review. Science of the Total Environment, 2019, 665, 890-912.	8.0	88
82	Bioavailability and risk estimation of heavy metal(loid)s in chromated copper arsenate treated timber after remediation for utilisation as garden materials. Chemosphere, 2019, 216, 757-765.	8.2	7
83	Impact of water and fertilizer management on arsenic bioaccumulation and speciation in rice plants grown under greenhouse conditions. Chemosphere, 2019, 214, 606-613.	8.2	33
84	Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: A review. Science of the Total Environment, 2018, 628-629, 1582-1599.	8.0	144
85	The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere, 2018, 199, 737-746.	8.2	119
86	Developing robust arsenic awareness prediction models using machine learning algorithms. Journal of Environmental Management, 2018, 211, 125-137.	7.8	38
87	Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar. Science of the Total Environment, 2018, 610-611, 1457-1466.	8.0	74
88	Hydrogeo-morphological influences for arsenic release and fate in the central Gangetic Basin, India. Environmental Technology and Innovation, 2018, 12, 243-260.	6.1	19
89	Core–Shell Interface-Oriented Synthesis of Bowl-Structured Hollow Silica Nanospheres Using Self-Assembled ABC Triblock Copolymeric Micelles. Langmuir, 2018, 34, 13584-13596.	3.5	9
90	A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan. Environmental Pollution, 2018, 242, 307-319.	7.5	175

#	Article	IF	CITATIONS
91	Groundwater Arsenic Contamination in the Ganga River Basin: A Future Health Danger. International Journal of Environmental Research and Public Health, 2018, 15, 180.	2.6	164
92	Arsenic and Other Elemental Concentrations in Mushrooms from Bangladesh: Health Risks. International Journal of Environmental Research and Public Health, 2018, 15, 919.	2.6	29
93	Risk and Benefit of Different Cooking Methods on Essential Elements and Arsenic in Rice. International Journal of Environmental Research and Public Health, 2018, 15, 1056.	2.6	53
94	Bio-Waste Management in Subtropical Soils of India. Advances in Agronomy, 2018, , 87-148.	5.2	29
95	Bioaccumulation and adverse effects of persistent organic pollutants (POPs) on ecosystems and human exposure: A review study on Bangladesh perspectives. Environmental Technology and Innovation, 2018, 12, 115-131.	6.1	52
96	Arsenic in groundwater of the Kolkata Municipal Corporation (KMC), India: Critical review and modes of mitigation. Chemosphere, 2017, 180, 437-447.	8.2	53
97	Variation in arsenic bioavailability in rice genotypes using swine model: An animal study. Science of the Total Environment, 2017, 599-600, 324-331.	8.0	31
98	Inorganic arsenic in rice and rice-based diets: Health risk assessment. Food Control, 2017, 82, 196-202.	5.5	66
99	Geographical variation and age-related dietary exposure to arsenic in rice from Bangladesh. Science of the Total Environment, 2017, 601-602, 122-131.	8.0	48
100	Investigating the relationship between lead speciation and bioaccessibility of mining impacted soils and dusts. Environmental Science and Pollution Research, 2017, 24, 17056-17067.	5.3	8
101	Groundwater arsenic contamination and its health effects in India. Hydrogeology Journal, 2017, 25, 1165-1181.	2.1	84
102	Concentrations of arsenic in water and fish in a tropical open lagoon, Southwest-Nigeria: Health risk assessment. Environmental Technology and Innovation, 2017, 8, 164-171.	6.1	5
103	Effect of irrigation and genotypes towards reduction in arsenic load in rice. Science of the Total Environment, 2017, 609, 311-318.	8.0	41
104	Enrichment, contamination and geo-accumulation factors for assessing arsenic contamination in sediment of a Tropical Open Lagoon, Southwest Nigeria. Environmental Technology and Innovation, 2017, 8, 126-131.	6.1	19
105	Soil Organic Carbon Dynamics in a Chhattisgarh Vertisol after Use of a Rice–Wheat System for 16 Years. Agronomy Journal, 2017, 109, 2556-2569.	1.8	7
106	Fate of over 480 million inhabitants living in arsenic and fluoride endemic Indian districts: Magnitude, health, socio-economic effects and mitigation approaches. Journal of Trace Elements in Medicine and Biology, 2016, 38, 33-45.	3.0	104
107	A meta-analysis to correlate lead bioavailability and bioaccessibility and predict lead bioavailability. Environment International, 2016, 92-93, 139-145.	10.0	20
108	Concentrations of inorganic arsenic in groundwater, agricultural soils and subsurface sediments from the middle Gangetic plain of Bihar, India. Science of the Total Environment, 2016, 573, 1103-1114.	8.0	54

#	Article	IF	CITATIONS
109	Arsenic accumulation in rice: Consequences of rice genotypes and management practices to reduce human health risk. Environment International, 2016, 96, 139-155.	10.0	101
110	Pore-Water Carbonate and Phosphate As Predictors of Arsenate Toxicity in Soil. Environmental Science & Technology, 2016, 50, 13062-13069.	10.0	15
111	Lead concentration in the blood of the general population living near a lead–zinc mine site, Nigeria: Exposure pathways. Science of the Total Environment, 2016, 542, 908-914.	8.0	46
112	Arsenic groundwater contamination and its health effects in Patna district (capital of Bihar) in the middle Ganga plain, India. Chemosphere, 2016, 152, 520-529.	8.2	144
113	Arsenic contamination of groundwater and its induced health effects in Shahpur block, Bhojpur district, Bihar state, India: risk evaluation. Environmental Science and Pollution Research, 2016, 23, 9492-9504.	5.3	75
114	Nanoencapsulation, Nano-guard for Pesticides: A New Window for Safe Application. Journal of Agricultural and Food Chemistry, 2016, 64, 1447-1483.	5.2	648
115	Uptake of lead by Na-exchanged and Al-pillared bentonite in the presence of organic acids with different functional groups. Applied Clay Science, 2016, 119, 417-423.	5.2	31
116	Arsenic and other elements in drinking water and dietary components from the middle Gangetic plain of Bihar, India: Health risk index. Science of the Total Environment, 2016, 539, 125-134.	8.0	163
117	Unraveling Health Risk and Speciation of Arsenic from Groundwater in Rural Areas of Punjab, Pakistan. International Journal of Environmental Research and Public Health, 2015, 12, 12371-12390.	2.6	157
118	Concentrations of arsenic and other elements in groundwater of Bangladesh and West Bengal, India: Potential cancer risk. Chemosphere, 2015, 139, 54-64.	8.2	104
119	Groundwater arsenic contamination in Bangladesh—21 Years of research. Journal of Trace Elements in Medicine and Biology, 2015, 31, 237-248.	3.0	130
120	Ecotoxicological Effects of an Arsenic Remediation Method on Three Freshwater Organisms—Lemna disperma, Chlorella sp. CE-35 and Ceriodaphnia cf. dubia. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	1
121	Groundwater Arsenic Contamination in Bengal Delta and Its Health Effects. , 2015, , 215-253.		3
122	Arsenic in Rice. , 2014, , 365-375.		4
123	Status of groundwater arsenic contamination in all 17 blocks of Nadia district in the state of West Bengal, India: A 23-year study report. Journal of Hydrology, 2014, 518, 363-372.	5.4	47
124	Arsenic Speciation in Australian-Grown and Imported Rice on Sale in Australia: Implications for Human Health Risk. Journal of Agricultural and Food Chemistry, 2014, 62, 6016-6024.	5.2	78
125	Arsenic in the groundwater of Majuli – The largest river island of the Brahmaputra: Magnitude of occurrence and human exposure. Journal of Hydrology, 2014, 518, 354-362.	5.4	38
126	Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton (Chlorella sp. CE-35). Ecotoxicology and Environmental Safety, 2014, 106, 126-135.	6.0	64

#	Article	IF	CITATIONS
127	Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: Health hazard. Ecotoxicology and Environmental Safety, 2014, 100, 53-60.	6.0	195
128	High arsenic in rice is associated with elevated genotoxic effects in humans. Scientific Reports, 2013, 3, 2195.	3.3	159
129	Environmental arsenic contamination and its health effects in a historic gold mining area of the Mangalur greenstone belt of Northeastern Karnataka, India. Journal of Hazardous Materials, 2013, 262, 1048-1055.	12.4	64
130	Groundwater arsenic contamination in Ganga–Meghna–Brahmaputra plain, its health effects and an approach for mitigation. Environmental Earth Sciences, 2013, 70, 1993-2008.	2.7	82
131	Water consumption patterns and factors contributing to water consumption in arsenic affected population of rural West Bengal, India. Science of the Total Environment, 2013, 463-464, 1217-1224.	8.0	55
132	Consumption of arsenic and other elements from vegetables and drinking water from an arsenic-contaminated area of Bangladesh. Journal of Hazardous Materials, 2013, 262, 1056-1063.	12.4	182
133	Organoclays reduce arsenic bioavailability and bioaccessibility in contaminated soils. Journal of Soils and Sediments, 2012, 12, 704-712.	3.0	34
134	Arsenic Contamination in Groundwater of Bangladesh: Perspectives on Geochemical, Microbial and Anthropogenic Issues. Water (Switzerland), 2011, 3, 1050-1076.	2.7	47
135	Arsenic Exposure from Rice and Water Sources inÂtheÂNoakhaliÂDistrict of Bangladesh. Water Quality, Exposure, and Health, 2011, 3, 1-10.	1.5	63
136	Status of groundwater arsenic contamination in Bangladesh: A 14-year study report. Water Research, 2010, 44, 5789-5802.	11.3	253
137	Status of groundwater arsenic contamination in the state of West Bengal, India: A 20â€year study report. Molecular Nutrition and Food Research, 2009, 53, 542-551.	3.3	252
138	Extraction of arsenic species in soils using microwave-assisted extraction detected by ion chromatography coupled to inductively coupled plasma mass spectrometry. Environmental Geochemistry and Health, 2009, 31, 93-102.	3.4	40
139	Arsenic contamination in groundwater in the Southeast Asia region. Environmental Geochemistry and Health, 2009, 31, 9-21.	3.4	178
140	Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environmental Geochemistry and Health, 2009, 31, 189-200.	3.4	336
141	Arsenic levels in rice grain and assessment of daily dietary intake of arsenic from rice in arsenic-contaminated regions of Bangladesh—implications to groundwater irrigation. Environmental Geochemistry and Health, 2009, 31, 179-187.	3.4	112
142	Groundwater Arsenic Contamination, Its Health Effects and Approach for Mitigation in West Bengal, India and Bangladesh. Water Quality, Exposure, and Health, 2009, 1, 5-21.	1.5	62
143	Heavy metal impact on bacterial biomass based on DNA analyses and uptake by wild plants in the abandoned copper mine soils. Bioresource Technology, 2009, 100, 3831-3836.	9.6	45
144	Sampling and Analysis of Arsenic in Groundwater in West Bengal, India, and Bangladesh. , 2009, , 95-130.		0

9

#	Article	IF	CITATIONS
145	The separation of arsenic species in soils and plant tissues by anion-exchange chromatography with inductively coupled mass spectrometry using various mobile phases. Microchemical Journal, 2008, 89, 20-28.	4.5	38
146	Speciation of vanadium by anion-exchange chromatography with inductively coupled plasma mass spectrometry and confirmation of vanadium complex formation using electrospray mass spectrometry. Journal of Analytical Atomic Spectrometry, 2007, 22, 811.	3.0	21
147	Million Dollar Arsenic Removal Plants in West Bengal, India: Useful or Not?. Water Quality Research Journal of Canada, 2006, 41, 216-225.	2.7	26
148	Speciation of arsenic by ion chromatography inductively coupled plasma mass spectrometry using ammonium eluents. Journal of Separation Science, 2006, 29, 2671-2676.	2.5	33
149	An eight-year study report on arsenic contamination in groundwater and health effects in Eruani village, Bangladesh and an approach for its mitigation. Journal of Health, Population and Nutrition, 2006, 24, 129-41.	2.0	35
150	Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. Journal of Health, Population and Nutrition, 2006, 24, 142-63.	2.0	273
151	Status of groundwater arsenic contamination and human suffering in a Gram Panchayet (cluster of) Tj ETQq1 1 0 Water and Health, 2005, 3, 283-296.	.784314 r 2.6	gBT /Overloc 21
152	The magnitude of arsenic contamination in groundwater and its health effects to the inhabitants of the Jalangi—one of the 85 arsenic affected blocks in West Bengal, India. Science of the Total Environment, 2005, 338, 189-200.	8.0	86
153	Murshidabad—One of the Nine Groundwater Arsenic-Affected Districts of West Bengal, India. Part I: Magnitude of Contamination and Population at Risk. Clinical Toxicology, 2005, 43, 823-834.	1.9	47
154	Murshidabad—One of the Nine Groundwater Arsenic-Affected Districts of West Bengal, India. Part II: Dermatological, Neurological, and Obstetric Findings. Clinical Toxicology, 2005, 43, 835-848.	1.9	101
155	Ineffectiveness and Poor Reliability of Arsenic Removal Plants in West Bengal, India. Environmental Science & Technology, 2005, 39, 4300-4306.	10.0	94
156	Assessment of DNA damage in peripheral blood lymphocytes of individuals susceptible to arsenic induced toxicity in West Bengal, India. Toxicology Letters, 2005, 159, 100-112.	0.8	55
157	Arsenic contamination of groundwater and its health impact on residents in a village in West Bengal, India. Bulletin of the World Health Organization, 2005, 83, 49-57.	3.3	31
158	Metals in Perspective. Journal of Environmental Monitoring, 2004, 6, 74N.	2.1	103
159	Risk of Arsenic Contamination in Groundwater: Response from Chakraborti et al Environmental Health Perspectives, 2004, 112, a20-a21.	6.0	6
160	Groundwater arsenic contamination and its health effects in the Ganga-Meghna-Brahmaputra plain. Journal of Environmental Monitoring, 2004, 6, 74N-83N.	2.1	48
161	Arsenic Groundwater Contamination and Sufferings of People in North 24-Parganas, One of the Nine Arsenic Affected Districts of West Bengal, India. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2003, 38, 25-59.	1.7	103
162	Neuropathy in Arsenic Toxicity from Groundwater Arsenic Contamination in West Bengal, India. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2003, 38, 165-183.	1.7	131

#	Article	IF	CITATIONS
163	Arsenic Toxicity from Homeopathic Treatment. Journal of Toxicology: Clinical Toxicology, 2003, 41, 963-967.	1.5	45
164	Pattern of Excretion of Arsenic Compounds [Arsenite, Arsenate, MMA(V), DMA(V)] in Urine of Children Compared to Adults from an Arsenic Exposed Area in Bangladesh. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2003, 38, 87-113.	1.7	87
165	Groundwater Arsenic Contamination in the Ganga-Padma-Meghna-Brahmaputra Plain of India and Bangladesh. Archives of Environmental Health, 2003, 58, 701-702.	0.4	24
166	Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: a future danger?. Environmental Health Perspectives, 2003, 111, 1194-1201.	6.0	471
167	Groundwater arsenic exposure in India. , 2003, , 3-24.		5
168	Arsenic calamity in the Indian subcontinent What lessons have been learned?. Talanta, 2002, 58, 3-22.	5.5	412
169	Effectiveness and Reliability of Arsenic Field Testing Kits:Â Are the Million Dollar Screening Projects Effective or Not?. Environmental Science & Technology, 2002, 36, 5385-5394.	10.0	175
170	Chronic Arsenic Toxicity in Bangladesh and West Bengal, India—A Review and Commentary. Journal of Toxicology: Clinical Toxicology, 2001, 39, 683-700.	1.5	357