Stefan Pfeffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/403565/publications.pdf Version: 2024-02-01

STEEAN DEFEED

#	Article	IF	CITATIONS
1	Modular assembly of the principal microtubule nucleator $\hat{1}^3$ -TuRC. Nature Communications, 2022, 13, 473.	12.8	18
2	Bacterial ribosome collision sensing by a MutS DNA repair ATPase paralogue. Nature, 2022, 603, 509-514.	27.8	27
3	Ribosome-associated quality-control mechanisms from bacteria to humans. Molecular Cell, 2022, 82, 1451-1466.	9.7	58
4	The structure of the Î ³ -TuRC: a 25-years-old molecular puzzle. Current Opinion in Structural Biology, 2021, 66, 15-21.	5.7	20
5	Mimicry of Canonical Translation Elongation Underlies Alanine Tail Synthesis in RQC. Molecular Cell, 2021, 81, 104-114.e6.	9.7	30
6	Microtubule nucleation: The waltz between γ-tubulin ring complexÂand associated proteins. Current Opinion in Cell Biology, 2021, 68, 124-131.	5.4	45
7	Reconstitution of the recombinant human Î ³ -tubulin ring complex. Open Biology, 2021, 11, 200325.	3.6	11
8	The gammaâ€ŧubulin ring complex: Deciphering the molecular organization and assembly mechanism of a major vertebrate microtubule nucleator. BioEssays, 2021, 43, e2100114.	2.5	8
9	Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms. Nature Methods, 2021, 18, 1386-1394.	19.0	84
10	How to build a ribosome from RNA fragments in Chlamydomonas mitochondria. Nature Communications, 2021, 12, 7176.	12.8	27
11	Template-free detection and classification of membrane-bound complexes in cryo-electron tomograms. Nature Methods, 2020, 17, 209-216.	19.0	60
12	The cryo-EM structure of a \hat{I}^3 -TuSC elucidates architecture and regulation of minimal microtubule nucleation systems. Nature Communications, 2020, 11, 5705.	12.8	7
13	Structural impact of K63 ubiquitin on yeast translocating ribosomes under oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22157-22166.	7.1	21
14	Insights into the assembly and activation of the microtubule nucleator Î ³ -TuRC. Nature, 2020, 578, 467-471.	27.8	106
15	MetAP-like Ebp1 occupies the human ribosomal tunnel exit and recruits flexible rRNA expansion segments. Nature Communications, 2020, 11, 776.	12.8	36
16	TRAM1 protein may support ER protein import by modulating the phospholipid bilayer near the lateral gate of the Sec61-channel. Channels, 2020, 14, 28-44.	2.8	13
17	A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. Nature Methods, 2019, 16, 757-762.	19.0	165
18	Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nature Plants, 2019, 5, 436-446.	9.3	114

STEFAN PFEFFER

#	Article	IF	CITATIONS
19	Functions and Mechanisms of the Human Ribosome-Translocon Complex. Sub-Cellular Biochemistry, 2019, 93, 83-141.	2.4	15
20	Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum. Science, 2018, 360, 215-219.	12.6	177
21	Plasma cell deficiency in human subjects with heterozygous mutations in Sec61 translocon alpha 1 subunit (SEC61A1). Journal of Allergy and Clinical Immunology, 2018, 141, 1427-1438.	2.9	63
22	Cryo-FIB Lamella Milling: A Comprehensive Technique to Prepare Samples of Both Plunge- and High-pressure Frozen-hydrated Specimens for in situ Studies Microscopy and Microanalysis, 2018, 24, 820-821.	0.4	5
23	Unravelling molecular complexity in structural cell biology. Current Opinion in Structural Biology, 2018, 52, 111-118.	5.7	54
24	Proteomics reveals signal peptide features determining the client specificity in human TRAP-dependent ER protein import. Nature Communications, 2018, 9, 3765.	12.8	68
25	mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding. Cell, 2018, 174, 338-349.e20.	28.9	330
26	Structural Biology in Situ Using Cryo-Electron Subtomogram Analysis. Biological and Medical Physics Series, 2018, , 237-259.	0.4	3
27	Subtomogram analysis using the Volta phase plate. Journal of Structural Biology, 2017, 197, 94-101.	2.8	71
28	Dissecting the molecular organization of the translocon-associated protein complex. Nature Communications, 2017, 8, 14516.	12.8	131
29	Structure of the Human Mitochondrial Ribosome Studied In Situ by Cryoelectron Tomography. Structure, 2017, 25, 1574-1581.e2.	3.3	73
30	An Update on Sec61 Channel Functions, Mechanisms, and Related Diseases. Frontiers in Physiology, 2017, 8, 887.	2.8	117
31	Towards High Resolution in Cryo-Electron Tomography Subtomogram Analysis. Microscopy and Microanalysis, 2017, 23, 812-813.	0.4	1
32	Organization of the native ribosome–translocon complex at the mammalian endoplasmic reticulum membrane. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2122-2129.	2.4	40
33	Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science, 2016, 351, 969-972.	12.6	493
34	Sec61: A static framework for membrane-protein insertion. Channels, 2016, 10, 167-169.	2.8	5
35	Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography. Nature Communications, 2015, 6, 6019.	12.8	115
36	Structure of the native Sec61 protein-conducting channel. Nature Communications, 2015, 6, 8403.	12.8	169

STEFAN PFEFFER

#	Article	IF	CITATIONS
37	Protein Transport into the Human Endoplasmic Reticulum. Journal of Molecular Biology, 2015, 427, 1159-1175.	4.2	71
38	Structure of the mammalian oligosaccharyl-transferase complex in the native ER protein translocon. Nature Communications, 2014, 5, 3072.	12.8	127
39	Autofocused 3D Classification of Cryoelectron Subtomograms. Structure, 2014, 22, 1528-1537.	3.3	43
40	Automated detection of polysomes in cryoelectron tomography. , 2014, , .		1
41	Fast and accurate reference-free alignment of subtomograms. Journal of Structural Biology, 2013, 182, 235-245.	2.8	70
42	Detection and identification of macromolecular complexes in cryo-electron tomograms using support vector machines. , 2012, , .		11
43	PyTom: A python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. Journal of Structural Biology, 2012, 178, 177-188.	2.8	202
44	Structure and 3D Arrangement of Endoplasmic Reticulum Membrane-Associated Ribosomes. Structure, 2012, 20, 1508-1518.	3.3	79