Jun Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/40353/publications.pdf

Version: 2024-02-01

232 papers

26,092 citations

4388 86 h-index 155

g-index

242 all docs 242 docs citations

times ranked

242

19180 citing authors

#	Article	IF	Citations
1	Design of Single-Atom Co–N ₅ Catalytic Site: A Robust Electrocatalyst for CO ₂ Reduction with Nearly 100% CO Selectivity and Remarkable Stability. Journal of the American Chemical Society, 2018, 140, 4218-4221.	13.7	945
2	Ultrahigh Hydrogen Evolution Performance of Underâ€Water "Superaerophobic―MoS ₂ Nanostructured Electrodes. Advanced Materials, 2014, 26, 2683-2687.	21.0	775
3	Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nature Catalysis, 2019, 2, 304-313.	34.4	757
4	Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation. Angewandte Chemie - International Edition, 2019, 58, 2321-2325.	13.8	543
5	Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science, 2017, 357, 788-792.	12.6	518
6	An Isolated Zinc–Cobalt Atomic Pair for Highly Active and Durable Oxygen Reduction. Angewandte Chemie - International Edition, 2019, 58, 2622-2626.	13.8	494
7	Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nature Chemistry, 2020, 12, 717-724.	13.6	485
8	Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nature Catalysis, 2019, 2, 495-503.	34.4	464
9	A Bimetallic Zn/Fe Polyphthalocyanineâ€Derived Singleâ€Atom Feâ€N ₄ Catalytic Site:A Superior Trifunctional Catalyst for Overall Water Splitting and Zn–Air Batteries. Angewandte Chemie - International Edition, 2018, 57, 8614-8618.	13.8	455
10	Non defect-stabilized thermally stable single-atom catalyst. Nature Communications, 2019, 10, 234.	12.8	452
11	Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nature Chemistry, 2020, 12, 764-772.	13.6	452
12	Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nature Communications, 2018, 9, 4454.	12.8	451
13	Potentialâ€Cycling Synthesis of Single Platinum Atoms for Efficient Hydrogen Evolution in Neutral Media. Angewandte Chemie - International Edition, 2017, 56, 13694-13698.	13.8	438
14	Integration of Plasmonic Effects and Schottky Junctions into Metal–Organic Framework Composites: Steering Charge Flow for Enhanced Visibleâ€Light Photocatalysis. Angewandte Chemie - International Edition, 2018, 57, 1103-1107.	13.8	429
15	Synergistic Effects between Atomically Dispersed Feâ^'Nâ^'C and Câ^'Sâ^'C for the Oxygen Reduction Reaction in Acidic Media. Angewandte Chemie - International Edition, 2017, 56, 13800-13804.	13.8	409
16	Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nature Communications, 2019, 10, 5181.	12.8	398
17	Identifying the Key Role of Pyridinicâ€N–Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER. Advanced Materials, 2018, 30, e1800005.	21.0	394
18	General synthesis of two-dimensional van der Waals heterostructure arrays. Nature, 2020, 579, 368-374.	27.8	393

#	Article	IF	Citations
19	Stable and Efficient Single-Atom Zn Catalyst for CO ₂ Reduction to CH ₄ . Journal of the American Chemical Society, 2020, 142, 12563-12567.	13.7	358
20	Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy and Environmental Science, 2018, 11, 2348-2352.	30.8	336
21	Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nature Communications, 2019, 10, 4290.	12.8	326
22	Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy, 2019, 61, 420-427.	16.0	318
23	Inâ€Situ Thermal Atomization To Convert Supported Nickel Nanoparticles into Surfaceâ€Bound Nickel Singleâ€Atom Catalysts. Angewandte Chemie - International Edition, 2018, 57, 14095-14100.	13.8	310
24	Strong Metal–Support Interactions between Pt Single Atoms and TiO ₂ . Angewandte Chemie - International Edition, 2020, 59, 11824-11829.	13.8	309
25	Surface evolution of a Pt–Pd–Au electrocatalyst for stable oxygen reduction. Nature Energy, 2017, 2, .	39.5	302
26	Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation. Nature Communications, 2019, 10, 2877.	12.8	279
27	Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nature Communications, 2018, 9, 2353.	12.8	278
28	Solid-Diffusion Synthesis of Single-Atom Catalysts Directly from Bulk Metal for Efficient CO2 Reduction. Joule, 2019, 3, 584-594.	24.0	277
29	Atomically Dispersed Iron–Nitrogen Active Sites within Porphyrinic Triazine-Based Frameworks for Oxygen Reduction Reaction in Both Alkaline and Acidic Media. ACS Energy Letters, 2018, 3, 883-889.	17.4	273
30	Metal (Hydr)oxides@Polymer Core–Shell Strategy to Metal Single-Atom Materials. Journal of the American Chemical Society, 2017, 139, 10976-10979.	13.7	257
31	Extraction of nickel from NiFe-LDH into Ni ₂ P@NiFe hydroxide as a bifunctional electrocatalyst for efficient overall water splitting. Chemical Science, 2018, 9, 1375-1384.	7.4	257
32	Microwaveâ€Assisted Rapid Synthesis of Grapheneâ€Supported Single Atomic Metals. Advanced Materials, 2018, 30, e1802146.	21.0	244
33	Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires. Nature Chemistry, 2018, 10, 456-461.	13.6	220
34	A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nature Communications, 2018, 9, 3861.	12.8	210
35	Strong metal-support interaction promoted scalable production of thermally stable single-atom catalysts. Nature Communications, 2020, 11 , 1263 .	12.8	198
36	Interface engineering of Pt and CeO2 nanorods with unique interaction for methanol oxidation. Nano Energy, 2018, 53, 604-612.	16.0	197

#	Article	IF	CITATIONS
37	3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2019, 240, 193-200.	20.2	197
38	Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation. Nature Communications, 2020, 11 , 5767.	12.8	197
39	Atomic Feâ€Doped MOFâ€Derived Carbon Polyhedrons with High Activeâ€Center Density and Ultraâ€High Performance toward PEM Fuel Cells. Advanced Energy Materials, 2019, 9, 1802856.	19.5	196
40	Synthesis of Ultrathin Metallic MTe ₂ (M = V, Nb, Ta) Singleâ€Crystalline Nanoplates. Advanced Materials, 2018, 30, e1801043.	21.0	183
41	New Deformation-Induced Nanostructure in Silicon. Nano Letters, 2018, 18, 4611-4617.	9.1	182
42	Self-powered H2 production with bifunctional hydrazine as sole consumable. Nature Communications, 2018, 9, 4365.	12.8	178
43	Nonâ€metal Singleâ€lodineâ€Atom Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 12252-12257.	13.8	175
44	Isolated copper single sites for high-performance electroreduction of carbon monoxide to multicarbon products. Nature Communications, 2021, 12, 238.	12.8	169
45	Upraising the O 2p Orbital by Integrating Ni with MoO ₂ for Accelerating Hydrogen Evolution Kinetics. ACS Catalysis, 2019, 9, 2275-2285.	11.2	165
46	Enhanced CO ₂ Electroreduction on Neighboring Zn/Co Monomers by Electronic Effect. Angewandte Chemie - International Edition, 2020, 59, 12664-12668.	13.8	164
47	Unravelling the Chemistry and Microstructure Evolution of a Cathodic Interface in Sulfide-Based All-Solid-State Li-Ion Batteries. ACS Energy Letters, 2019, 4, 2480-2488.	17.4	154
48	Cobalt single-atoms anchored on porphyrinic triazine-based frameworks as bifunctional electrocatalysts for oxygen reduction and hydrogen evolution reactions. Journal of Materials Chemistry A, 2019, 7, 1252-1259.	10.3	152
49	g-C ₃ N ₄ promoted MOF derived hollow carbon nanopolyhedra doped with high density/fraction of single Fe atoms as an ultra-high performance non-precious catalyst towards acidic ORR and PEM fuel cells. Journal of Materials Chemistry A, 2019, 7, 5020-5030.	10.3	152
50	Modulating Singleâ€Atom Palladium Sites with Copper for Enhanced Ambient Ammonia Electrosynthesis. Angewandte Chemie - International Edition, 2021, 60, 345-350.	13.8	150
51	Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Research, 2021, 14, 1374-1381.	10.4	148
52	Mesoporous Nitrogenâ€Doped Carbonâ€Nanosphereâ€Supported Isolated Singleâ€Atom Pd Catalyst for Highly Efficient Semihydrogenation of Acetylene. Advanced Materials, 2019, 31, e1901024.	21.0	146
53	In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nature Communications, 2020, 11, 5889.	12.8	145
54	A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nature Materials, 2022, 21, 681-688.	27.5	145

#	Article	IF	Citations
55	Amorphous MoOX-Stabilized single platinum atoms with ultrahigh mass activity for acidic hydrogen evolution. Nano Energy, 2020, 70, 104529.	16.0	142
56	Nanoporous Zn-doped Co3O4 sheets with single-unit-cell-wide lateral surfaces for efficient oxygen evolution and water splitting. Nano Energy, 2018, 44, 371-377.	16.0	138
57	Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nature Communications, 2022, 13, 2193.	12.8	137
58	Modulating Lattice Oxygen in Dual-Functional Mo–V–O Mixed Oxides for Chemical Looping Oxidative Dehydrogenation. Journal of the American Chemical Society, 2019, 141, 18653-18657.	13.7	133
59	Simultaneous oxidative and reductive reactions in one system by atomic design. Nature Catalysis, 2021, 4, 134-143.	34.4	132
60	Synergetic interaction between neighboring platinum and ruthenium monomers boosts CO oxidation. Chemical Science, 2019, 10, 5898-5905.	7.4	127
61	Unraveling the Reactivity and Selectivity of Atomically Isolated Metal–Nitrogen Sites Anchored on Porphyrinic Triazine Frameworks for Electroreduction of CO ⟨sub⟩2⟨/sub⟩. CCS Chemistry, 2019, 1, 384-395.	7.8	125
62	One-Pot Pyrolysis to N-Doped Graphene with High-Density Pt Single Atomic Sites as Heterogeneous Catalyst for Alkene Hydrosilylation. ACS Catalysis, 2018, 8, 10004-10011.	11.2	121
63	Trifunctional Singleâ€Atomic Ru Sites Enable Efficient Overall Water Splitting and Oxygen Reduction in Acidic Media. Small, 2020, 16, e2002888.	10.0	120
64	Efficient and stable electroreduction of CO ₂ to CH ₄ on CuS nanosheet arrays. Journal of Materials Chemistry A, 2017, 5, 20239-20243.	10.3	119
65	Synthetic Control of Two-Dimensional NiTe ₂ Single Crystals with Highly Uniform Thickness Distributions. Journal of the American Chemical Society, 2018, 140, 14217-14223.	13.7	119
66	Highly Productive Electrosynthesis of Ammonia by Admolecule-Targeting Single Ag Sites. ACS Nano, 2020, 14, 6938-6946.	14.6	119
67	Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nature Catalysis, 2022, 5, 251-258.	34.4	118
68	An Isolated Zinc–Cobalt Atomic Pair for Highly Active and Durable Oxygen Reduction. Angewandte Chemie, 2019, 131, 2648-2652.	2.0	116
69	Propane Dehydrogenation on Single-Site [PtZn4] Intermetallic Catalysts. CheM, 2021, 7, 387-405.	11.7	116
70	Edge Sites with Unsaturated Coordination on Core–Shell Mn ₃ O ₄ @Mn <i>_x</i> Co _{3â^²} <i>_x</i> Nanostructures for Electrocatalytic Water Oxidation. Advanced Materials, 2017, 29, 1701820.	subus0	115
71	Ambient Synthesis of Singleâ€Atom Catalysts from Bulk Metal via Trapping of Atoms by Surface Dangling Bonds. Advanced Materials, 2019, 31, e1904496.	21.0	114
72	Scaleâ€Up Biomass Pathway to Cobalt Singleâ€Site Catalysts Anchored on Nâ€Doped Porous Carbon Nanobelt with Ultrahigh Surface Area. Advanced Functional Materials, 2018, 28, 1802167.	14.9	112

#	Article	IF	Citations
73	Ambient electrosynthesis of ammonia with efficient denitration. Nano Energy, 2020, 78, 105321.	16.0	110
74	Cation-Exchange Induced Precise Regulation of Single Copper Site Triggers Room-Temperature Oxidation of Benzene. Journal of the American Chemical Society, 2020, 142, 12643-12650.	13.7	110
75	Dual-functional interfaces for highly stable Ni-rich layered cathodes in sulfide all-solid-state batteries. Energy Storage Materials, 2020, 27, 117-123.	18.0	109
76	Advanced Matrixes for Binderâ€Free Nanostructured Electrodes in Lithiumâ€Ion Batteries. Advanced Materials, 2020, 32, e1908445.	21.0	108
77	Direct imaging and determination of the crystal structure of six-layered graphdiyne. Nano Research, 2018, 11, 1714-1721.	10.4	100
78	Highly Active, Durable Ultrathin MoTe ₂ Layers for the Electroreduction of CO ₂ to CH ₄ . Small, 2018, 14, e1704049.	10.0	99
79	Bi(OH) ₃ /PdBi Composite Nanochains as Highly Active and Durable Electrocatalysts for Ethanol Oxidation. Nano Letters, 2019, 19, 4752-4759.	9.1	99
80	Enhanced electrochemical performance of bulk type oxide ceramic lithium batteries enabled by interface modification. Journal of Materials Chemistry A, 2018, 6, 4649-4657.	10.3	98
81	Atomically dispersed Ni as the active site towards selective hydrogenation of nitroarenes. Green Chemistry, 2019, 21, 704-711.	9.0	98
82	Active and Stable Pt–Ni Alloy Octahedra Catalyst for Oxygen Reduction via Near-Surface Atomical Engineering. ACS Catalysis, 2020, 10, 4205-4214.	11.2	98
83	High-Quality Single-Crystalline MFI-Type Nanozeolites: A Facile Synthetic Strategy and MTP Catalytic Studies. Chemistry of Materials, 2018, 30, 2750-2758.	6.7	96
84	Rechargeable Al–CO ₂ Batteries for Reversible Utilization of CO ₂ . Advanced Materials, 2018, 30, e1801152.	21.0	96
85	Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation. Angewandte Chemie, 2019, 131, 2343-2347.	2.0	95
86	Local Modulation of Single-Atomic Mn Sites for Enhanced Ambient Ammonia Electrosynthesis. ACS Catalysis, 2021, 11, 509-516.	11.2	93
87	Unveiling the Nature of Pt Singleâ€Atom Catalyst during Electrocatalytic Hydrogen Evolution and Oxygen Reduction Reactions. Small, 2021, 17, e2007245.	10.0	91
88	Oxidative strong metal–support interactions (OMSI) of supported platinum-group metal catalysts. Chemical Science, 2018, 9, 6679-6684.	7.4	89
89	Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation. Science Advances, 2022, 8, .	10.3	89
90	Synergistic Effects between Atomically Dispersed Feâ^'Nâ^'C and Câ^'Sâ^'C for the Oxygen Reduction Reaction in Acidic Media. Angewandte Chemie, 2017, 129, 13988-13992.	2.0	88

#	Article	IF	Citations
91	Transition metal macrocycles for heterogeneous electrochemical CO2 reduction. Coordination Chemistry Reviews, 2020, 422, 213435.	18.8	88
92	MoS ₂ Negativeâ€Capacitance Fieldâ€Effect Transistors with Subthreshold Swing below the Physics Limit. Advanced Materials, 2018, 30, e1800932.	21.0	87
93	Regulating the Catalytic Performance of Single-Atomic-Site Ir Catalyst for Biomass Conversion by Metal–Support Interactions. ACS Catalysis, 2019, 9, 5223-5230.	11.2	87
94	Plasma-activated Co3(PO4)2 nanosheet arrays with Co3+-Rich surfaces for overall water splitting. Journal of Power Sources, 2018, 400, 190-197.	7.8	86
95	Atomically dispersed Fe-N-P-C complex electrocatalysts for superior oxygen reduction. Applied Catalysis B: Environmental, 2019, 249, 306-315.	20.2	85
96	AuCu Alloy Nanoparticle Embedded Cu Submicrocone Arrays for Selective Conversion of CO ₂ to Ethanol. Small, 2019, 15, e1902229.	10.0	83
97	Unraveling Enhanced Activity, Selectivity, and Coke Resistance of Pt–Ni Bimetallic Clusters in Dry Reforming. ACS Catalysis, 2021, 11, 2398-2411.	11.2	83
98	Rutheniumâ€Doped Cobalt–Chromium Layered Double Hydroxides for Enhancing Oxygen Evolution through Regulating Charge Transfer. Small, 2020, 16, e1905328.	10.0	80
99	Eliminating the Detrimental Effects of Conductive Agents in Sulfide-Based Solid-State Batteries. ACS Energy Letters, 2020, 5, 1243-1251.	17.4	80
100	NiFe layered double hydroxide nanosheet array for high-efficiency electrocatalytic reduction of nitric oxide to ammonia. Chemical Communications, 2022, 58, 8097-8100.	4.1	79
101	Porous Mnâ€Doped FeP/Co ₃ (PO ₄) ₂ Nanosheets as Efficient Electrocatalysts for Overall Water Splitting in a Wide pH Range. ChemSusChem, 2019, 12, 1334-1341.	6.8	78
102	Coordination environment engineering to boost electrocatalytic CO2 reduction performance by introducing boron into single-Fe-atomic catalyst. Chemical Engineering Journal, 2022, 437, 135294.	12.7	77
103	Single-Atom Au ^I –N ₃ Site for Acetylene Hydrochlorination Reaction. ACS Catalysis, 2020, 10, 1865-1870.	11.2	76
104	Polycrystalline SnS _{<i>x</i>} nanofilm enables CO ₂ electroreduction to formate with high current density. Chemical Communications, 2022, 58, 7654-7657.	4.1	76
105	Alloyed Palladium–Silver Nanowires Enabling Ultrastable Carbon Dioxide Reduction to Formate. Advanced Materials, 2021, 33, e2005821.	21.0	73
106	A Supported Nickel Catalyst Stabilized by a Surface Digging Effect for Efficient Methane Oxidation. Angewandte Chemie - International Edition, 2019, 58, 18388-18393.	13.8	69
107	Electrochemical CO ₂ reduction: from nanoclusters to single atom catalysts. Sustainable Energy and Fuels, 2020, 4, 1012-1028.	4.9	69
108	Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nature Communications, 2020, 11 , 335.	12.8	69

#	Article	IF	Citations
109	Recent advances in non-noble metal-based bifunctional electrocatalysts for overall seawater splitting. Journal of Alloys and Compounds, 2022, 922, 166113.	5.5	66
110	Cobaltâ^'Iron Oxide Nanosheets for Highâ€Efficiency Solarâ€Driven CO ₂ â^'H ₂ O Coupling Electrocatalytic Reactions. Advanced Functional Materials, 2020, 30, 2003438.	14.9	65
111	Dynamic co-catalysis of Au single atoms and nanoporous Au for methane pyrolysis. Nature Communications, 2020, 11, 1919.	12.8	65
112	Ultrafast growth of large single crystals of monolayer WS2 and WSe2. National Science Review, 2020, 7, 737-744.	9.5	64
113	Highly dispersed Bi clusters for efficient rechargeable Znâ^'CO2 batteries. Applied Catalysis B: Environmental, 2022, 307, 121145.	20.2	64
114	Structural Characterization and Identification of Graphdiyne and Graphdiyne-Based Materials. ACS Applied Materials & Distriction and Identification of Graphdiyne and Graphdiyne-Based Materials. ACS Applied Materials & Distriction and Identification of Graphdiyne and Graphdiyne-Based Materials. ACS Applied Materials & Distriction of Graphdiyne and Graphdiyne-Based Materials. ACS Applied Materials & Distriction of Graphdiyne and Graphdiyne-Based Materials. ACS Applied Materials & Distriction of Graphdiyne and Graphdiyne-Based Materials. ACS Applied Materials & Distriction of Graphdiyne and Graphdiyne-Based Materials.	8.0	62
115	Single-crystalline dendritic bimetallic and multimetallic nanocubes. Chemical Science, 2015, 6, 7122-7129.	7.4	61
116	High Selectivity Toward C ₂ H ₄ Production over Cu Particles Supported by Butterfly-Wing-Derived Carbon Frameworks. ACS Applied Materials & Samp; Interfaces, 2018, 10, 12618-12625.	8.0	60
117	Ganodermaâ€Like MoS ₂ /NiS ₂ with Single Platinum Atoms Doping as an Efficient and Stable Hydrogen Evolution Reaction Catalyst. Small, 2018, 14, e1800697.	10.0	60
118	Metalâ€Free Bifunctional Ordered Mesoporous Carbon for Reversible Zn O ₂ Batteries. Small Methods, 2021, 5, e2001039.	8.6	60
119	Two-Dimensional Palladium–Copper Alloy Nanodendrites for Highly Stable and Selective Electrochemical Formate Production. Nano Letters, 2021, 21, 4092-4098.	9.1	59
120	Construction of MnO ₂ Artificial Leaf with Atomic Thickness as Highly Stable Battery Anodes. Advanced Materials, 2020, 32, e1906582.	21.0	57
121	Highly selective electrocatalytic reduction of CO2 to formate over Tin(IV) sulfide monolayers. Journal of Catalysis, 2018, 364, 125-130.	6.2	56
122	General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy. Nature Communications, 2022, 13, 776.	12.8	56
123	WO ₃ @αâ€Fe ₂ O ₃ Heterojunction Arrays with Improved Photoelectrochemical Behavior for Neutral pH Water Splitting. ChemCatChem, 2016, 8, 2765-2770.	3.7	55
124	Revealing the Role of Fluorideâ€Rich Battery Electrode Interphases by Operando Transmission Electron Microscopy. Advanced Energy Materials, 2021, 11, 2003118.	19.5	54
125	NiCu Bimetallic Nanoparticles on Silica Support for Catalytic Hydrolysis of Ammonia Borane: Composition-Dependent Activity and Support Size Effect. ACS Applied Energy Materials, 2019, 2, 5851-5861.	5.1	53
126	Self-supported NbSe2 nanosheet arrays for highly efficient ammonia electrosynthesis under ambient conditions. Journal of Catalysis, 2020, 381, 78-83.	6.2	53

#	Article	IF	CITATIONS
127	Engineering Atomic Sites via Adjacent Dualâ€Metal Subâ€Nanoclusters for Efficient Oxygen Reduction Reaction and Znâ€Air Battery. Small, 2020, 16, e2004855.	10.0	53
128	Accelerating hydrazine-assisted hydrogen production kinetics with Mn dopant modulated CoS ₂ nanowire arrays. Inorganic Chemistry Frontiers, 2022, 9, 3047-3058.	6.0	53
129	Atomic Design and Fine-Tuning of Subnanometric Pt Catalysts to Tame Hydrogen Generation. ACS Catalysis, 2021, 11, 4146-4156.	11.2	52
130	Chemical Vapor Deposition Growth of Single Crystalline CoTe ₂ Nanosheets with Tunable Thickness and Electronic Properties. Chemistry of Materials, 2018, 30, 8891-8896.	6.7	51
131	Shape-Engineered Synthesis of Atomically Thin 1T-SnS ₂ Catalyzed by Potassium Halides. ACS Nano, 2019, 13, 8265-8274.	14.6	51
132	Potentialâ€Cycling Synthesis of Single Platinum Atoms for Efficient Hydrogen Evolution in Neutral Media. Angewandte Chemie, 2017, 129, 13882-13886.	2.0	49
133	Selective Electroreduction of CO ₂ to C2 Products over Cu ₃ Nâ€Derived Cu Nanowires. ChemElectroChem, 2019, 6, 2393-2397.	3.4	49
134	Semimetal 1Hâ€6nS ₂ Enables Highâ€Efficiency Electroreduction of CO ₂ to CO. Small Methods, 2020, 4, 2000567.	8.6	48
135	Hollow CoFe-layered double hydroxide polyhedrons for highly efficient CO2 electrolysis. Science China Materials, 2022, 65, 536-542.	6.3	47
136	Stepped surface-rich copper fiber felt as an efficient electrocatalyst for the CO ₂ RR to formate. Journal of Materials Chemistry A, 2018, 6, 18960-18966.	10.3	46
137	Strong Metal–Support Interactions between Pt Single Atoms and TiO ₂ . Angewandte Chemie, 2020, 132, 11922-11927.	2.0	46
138	Rh ₂ S ₃ /Nâ€Doped Carbon Hybrids as pHâ€Universal Bifunctional Electrocatalysts for Energyâ€Saving Hydrogen Evolution. Small Methods, 2020, 4, 2000208.	8.6	45
139	Preparation of high entropy alloys and application to catalytical water electrolysis. APL Materials, 2022, 10, .	5.1	45
140	Manipulating Gold Spatial Location on Titanium Silicalite-1 To Enhance the Catalytic Performance for Direct Propene Epoxidation with H ₂ and O ₂ . ACS Catalysis, 2018, 8, 10649-10657.	11.2	44
141	Spinel/Lithiumâ€Rich Manganese Oxide Hybrid Nanofibers as Cathode Materials for Rechargeable Lithiumâ€lon Batteries. Small Methods, 2019, 3, 1900350.	8.6	44
142	Current-Density-Dependent Electroplating in Ca Electrolytes: From Globules to Dendrites. ACS Energy Letters, 2020, 5, 2283-2290.	17.4	44
143	Modulating Singleâ€Atom Palladium Sites with Copper for Enhanced Ambient Ammonia Electrosynthesis. Angewandte Chemie, 2021, 133, 349-354.	2.0	44
144	Integration of partially phosphatized bimetal centers into trifunctional catalyst for high-performance hydrogen production and flexible Zn-air battery. Science China Materials, 2022, 65, 1176-1186.	6.3	44

#	Article	IF	Citations
145	Revealing the Correlation between Catalytic Selectivity and the Local Coordination Environment of Pt Single Atom. Nano Letters, 2020, 20, 6865-6872.	9.1	42
146	Inâ€Situ Thermal Atomization To Convert Supported Nickel Nanoparticles into Surfaceâ€Bound Nickel Singleâ€Atom Catalysts. Angewandte Chemie, 2018, 130, 14291-14296.	2.0	41
147	Nitrogenâ€Doped Carbon Polyhedrons Confined Fe–P Nanocrystals as Highâ€Efficiency Bifunctional Catalysts for Aqueous Znâ°'CO ₂ Batteries. Small, 2022, 18, e2104965.	10.0	39
148	Oxygen Doping Induced by Nitrogen Vacancies in Nb ₄ N ₅ Enables Highly Selective CO ₂ Reduction. Small, 2020, 16, e1905825.	10.0	38
149	Competitive Coordination Strategy to Finely Tune Pore Environment of Zirconium-Based Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22732-22738.	8.0	36
150	Breaking the Si/Al Limit of Nanosized \hat{l}^2 Zeolites: Promoting Catalytic Production of Lactide. Chemistry of Materials, 2020, 32, 751-758.	6.7	35
151	Single-atom-layer traps in a solid electrolyte for lithium batteries. Nature Communications, 2020, 11, 1828.	12.8	35
152	Efficient Electroreduction CO ₂ to CO over MnO ₂ Nanosheets. Inorganic Chemistry, 2019, 58, 8910-8914.	4.0	34
153	Maximizing the utility of single atom electrocatalysts on a 3D graphene nanomesh. Journal of Materials Chemistry A, 2019, 7, 15575-15579.	10.3	34
154	A nanopump for low-temperature and efficient solar water evaporation. Journal of Materials Chemistry A, 2019, 7, 24311-24319.	10.3	34
155	Notched-Polyoxometalate Strategy to Fabricate Atomically Dispersed Ru Catalysts for Biomass Conversion. ACS Catalysis, 2021, 11, 2669-2675.	11.2	34
156	Self-driven dual hydrogen production system based on a bifunctional single-atomic Rh catalyst. Journal of Materials Chemistry A, 2022, 10, 6134-6145.	10.3	34
157	Highly dispersed Ag clusters for active and stable hydrogen peroxide production. Nano Research, 2022, 15, 5842-5847.	10.4	34
158	Nitrogen-incorporated iron phosphosulfide nanosheets as efficient bifunctional electrocatalysts for energy-saving hydrogen evolution. Ionics, 2022, 28, 3927-3934.	2.4	34
159	Isolated single-atom Pt sites for highly selective electrocatalytic hydrogenation of formaldehyde to methanol. Journal of Materials Chemistry A, 2020, 8, 8913-8919.	10.3	33
160	Poplarâ€Catkinâ€Derived N, P Coâ€doped Carbon Microtubes as Efficient Oxygen Electrocatalysts for Znâ€Air Batteries. ChemElectroChem, 2018, 5, 1113-1119.	3.4	32
161	Singleâ€Atom Catalysts for the Electrocatalytic Reduction of Nitrogen to Ammonia under Ambient Conditions. Chemistry - an Asian Journal, 2019, 14, 2770-2779.	3.3	32
162	van der Waals epitaxial growth of ultrathin metallic NiSe nanosheets on WSe2 as high performance contacts for WSe2 transistors. Nano Research, 2019, 12, 1683-1689.	10.4	31

#	Article	IF	Citations
163	Coralloid Au enables high-performance Zn–CO ₂ battery and self-driven CO production. Journal of Materials Chemistry A, 2021, 9, 21024-21031.	10.3	31
164	Enamel Repair with Amorphous Ceramics. Advanced Materials, 2020, 32, e1907067.	21.0	30
165	Two-in-one solution using insect wings to produce graphene-graphite films for efficient electrocatalysis. Nano Research, 2019, 12, 33-39.	10.4	29
166	Boost oxygen reduction reaction performance by tuning the active sites in Fe-N-P-C catalysts. Journal of Energy Chemistry, 2021, 55, 572-579.	12.9	29
167	Tailoring electronic properties and kinetics behaviors of Pd/N NTs catalysts for selective hydrogenation of acetylene. AICHE Journal, 2020, 66, e16857.	3.6	28
168	Bifunctional single-atomic Mn sites for energy-efficient hydrogen production. Nanoscale, 2021, 13, 4767-4773.	5.6	26
169	Heteroatom coordination induces electric field polarization of single Pt sites to promote hydrogen evolution activity. Nanoscale, 2021, 13, 7134-7139.	5.6	26
170	Selective electrolysis of CO2 to CO on ultrathin In2Se3 nanosheets. Electrochemistry Communications, 2019, 103, 127-132.	4.7	25
171	Rh nanoparticle functionalized heteroatom-doped hollow carbon spheres for efficient electrocatalytic hydrogen evolution. Materials Chemistry Frontiers, 2021, 5, 3125-3131.	5.9	24
172	Selective voltammetric determination of Cd(II) by using N,S-codoped porous carbon nanofibers. Mikrochimica Acta, 2018, 185, 282.	5.0	23
173	Facile synthesis of Al-doped NiO nanosheet arrays for high-performance supercapacitors. Royal Society Open Science, 2018, 5, 180842.	2.4	23
174	Nonâ€metal Singleâ€lodineâ€Atom Electrocatalysts for the Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 12380-12385.	2.0	23
175	Atomic iron on mesoporous N-doped carbon to achieve dehydrogenation reaction at room temperature. Nano Research, 2020, 13, 3075-3081.	10.4	23
176	Nitrogen doping and titanium vacancies synergistically promote CO ₂ fixation in seawater. Nanoscale, 2020, 12, 17191-17195.	5.6	23
177	Enhanced CO ₂ Electroreduction on Neighboring Zn/Co Monomers by Electronic Effect. Angewandte Chemie, 2020, 132, 12764-12768.	2.0	23
178	Multi-shelled hollow layered double hydroxides with enhanced performance for the oxygen evolution reaction. Chemical Communications, 2021, 57, 2752-2755.	4.1	23
179	Boosting hydrogen evolution activity of vanadyl pyrophosphate nanosheets for electrocatalytic overall water splitting. Chemical Communications, 2019, 55, 10511-10514.	4.1	22
180	Sustainable and Atomically Dispersed Iron Electrocatalysts Derived from Nitrogen―and Phosphorusâ€Modified Woody Biomass for Efficient Oxygen Reduction. Advanced Materials Interfaces, 2019, 6, 1801623.	3.7	22

#	Article	IF	Citations
181	Electroreduction of carbon dioxide to formate over a thin-layered tin diselenide electrode. Catalysis Science and Technology, 2018, 8, 5428-5433.	4.1	21
182	Modification of the Coordination Environment of Active Sites on MoC for Highâ€Efficiency CH ₄ Production. Advanced Energy Materials, 2021, 11, 2100044.	19.5	21
183	Enhanced catalytic performance of zinc oxide nanorods with crystal plane control. CrystEngComm, 2019, 21, 5526-5532.	2.6	20
184	A Supported Nickel Catalyst Stabilized by a Surface Digging Effect for Efficient Methane Oxidation. Angewandte Chemie, 2019, 131, 18559-18564.	2.0	20
185	Nitrogen dopant induced highly selective CO ₂ reduction over lotus-leaf shaped ZnO nanorods. Materials Chemistry Frontiers, 2021, 5, 4225-4230.	5.9	20
186	Highly Selective Synthesis of Monolayer or Bilayer WSe ₂ Single Crystals by Pre-annealing the Solid Precursor. Chemistry of Materials, 2021, 33, 1307-1313.	6.7	20
187	S vacancies in 2D SnS2 accelerating hydrogen evolution reaction. Science China Materials, 2022, 65, 1833-1841.	6.3	19
188	A welding phenomenon of dissimilar nanoparticles in dispersion. Nature Communications, 2019, 10, 219.	12.8	18
189	Nickel Cobalt Thiospinel Nanoparticles as Hydrodesulfurization Catalysts: Importance of Cation Position, Structural Stability, and Sulfur Vacancy. ACS Applied Materials & Diterfaces, 2018, 10, 19673-19681.	8.0	17
190	Subnano Ruthenium Species Anchored on Tin Dioxide Surface for Efficient Alkaline Hydrogen Evolution Reaction. Cell Reports Physical Science, 2020, 1, 100026.	5.6	16
191	Dual-Doping Promotes the Carbon Dioxide Electroreduction Activity of MoS ₂ Nanosheet Array. ACS Applied Energy Materials, 2021, 4, 7492-7496.	5.1	14
192	Graphene Hybrids: Identifying the Key Role of Pyridinicâ€N–Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER (Adv. Mater. 23/2018). Advanced Materials, 2018, 30, 1870164.	21.0	13
193	Selective Formation of C2 Products from Electrochemical CO < sub>2 < /sub> Reduction over Cu < sub>1.8 < /sub> Se Nanowires. ACS Applied Energy Materials, 0, , .	5.1	11
194	Edge-Contact Geometry and Anion-Deficit Construction for Activating Ultrathin MoS ₂ on W ₁₇ O ₄₇ in the Hydrogen Evolution Reaction. Inorganic Chemistry, 2019, 58, 11241-11247.	4.0	10
195	Simple physical preparation of single copper atoms on amorphous carbon <i>via</i> Coulomb explosion. Nanoscale, 2019, 11, 7595-7599.	5.6	9
196	Electrochemical nitrogen fixation via bimetallic Sn-Ti sites on defective titanium oxide catalysts. Journal of Colloid and Interface Science, 2021, 588, 242-247.	9.4	9
197	Ultrathin nanoporous metal–semiconductor heterojunction photoanodes for visible light hydrogen evolution. Nano Research, 2018, 11, 2046-2057.	10.4	8
198	Directing Gold Nanoparticles into Freeâ€Standing Honeycombâ€Like Ordered Mesoporous Superstructures. Small, 2019, 15, e1901304.	10.0	8

#	Article	IF	Citations
199	Visualization of crystal plane selectivity for irreversible phase transition in MnO@C anode. Chemical Communications, 2020, 56, 3753-3756.	4.1	8
200	Vertical Stacking of Copper Sulfide Nanoparticles and Molybdenum Sulfide Nanosheets for Enhanced Nonlinear Absorption. ACS Applied Materials & Samp; Interfaces, 2019, 11, 35835-35844.	8.0	7
201	Atomic-scale selectivity of hydrogen for storage sites in Pd nanoparticles at atmospheric pressure. Nanoscale, 2019, 11, 10198-10202.	5.6	7
202	Innenr $\tilde{A}\frac{1}{4}$ cktitelbild: Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation (Angew. Chem. 8/2019). Angewandte Chemie, 2019, 131, 2547-2547.	2.0	7
203	Atomic observation of phase transition in layered SnS2 driven by $\langle i \rangle$ in situ $\langle i \rangle$ heating and electron beam irradiation. Applied Physics Letters, 2020, 117, .	3.3	7
204	Single Cu Atoms as Catalysts for Efficient Hydrazine Oxidation Reaction. ChemNanoMat, 2020, 6, 1474-1478.	2.8	7
205	Surface Oxidized Ag Nanofilms Towards Highly Effective CO 2 Reduction. ChemElectroChem, 2021, 8, 3579-3583.	3.4	7
206	Ag-decorated GaN for high-efficiency photoreduction of carbon dioxide into tunable syngas under visible light. Nanotechnology, 2021, 32, 505722.	2.6	7
207	Metal-Confined Synthesis of ZnS ₂ Monolayer Catalysts for Dinitrogen Electroreduction. ACS Catalysis, 2022, 12, 6809-6815.	11.2	6
208	X-ray imaging of atomic nuclei. Science China Materials, 2020, 63, 1788-1796.	6.3	5
209	Mechanical reliability, thermal stability and thermoelectric performance of the transition-metal nitride CrN. Philosophical Magazine Letters, 2020, 100, 128-139.	1.2	5
210	Atomically Intimate Solid Electrolyte/Electrode Contact Capable of Surviving Long-Term Cycling with Repeated Phase Transitions. Nano Letters, 2022, 22, 3457-3464.	9.1	5
211	The <i>in situ</i> removal of surface molybdenum oxide for making binder-free porous Mo _{1.98} C _{1.02} film a more efficient electrocatalyst for alkaline rather than acidic hydrogen production. Sustainable Energy and Fuels, 2021, 5, 3373-3381.	4.9	4
212	Monolayer goldene intercalated in graphene layers. Applied Physics Letters, 2020, 117, .	3.3	4
213	Ethanolâ€Selectivity: AuCu Alloy Nanoparticle Embedded Cu Submicrocone Arrays for Selective Conversion of CO ₂ to Ethanol (Small 37/2019). Small, 2019, 15, 1970193.	10.0	3
214	Synthesis of a synergistic catalyst for oxygen reduction and a Zn–air battery by the in situ coupling of hemin-derived Fe3O4/N-doped graphitic carbon. Materials Research Express, 2019, 6, 065019.	1.6	3
215	Intermediate Structures of Nucleation and Growth during Solidification of CuO Constrained by Graphene. Advanced Materials Interfaces, 2020, 7, 1902047.	3.7	3
216	Hydrogen Evolution Reaction: Ganoderma-Like MoS2 /NiS2 with Single Platinum Atoms Doping as an Efficient and Stable Hydrogen Evolution Reaction Catalyst (Small 27/2018). Small, 2018, 14, 1870125.	10.0	2

#	Article	IF	CITATIONS
217	Rücktitelbild: Integration of Plasmonic Effects and Schottky Junctions into Metal–Organic Framework Composites: Steering Charge Flow for Enhanced Visible‣ight Photocatalysis (Angew.) Tj ETQq1 1 ().7 8.4 314 r	gBT Overlo
218	Electrocatalysts: Highly Active, Durable Ultrathin MoTe2 Layers for the Electroreduction of CO2 to CH4 (Small 16/2018). Small, 2018, 14, 1870073.	10.0	1
219	Singleâ€Atom Catalysts: Ambient Synthesis of Singleâ€Atom Catalysts from Bulk Metal via Trapping of Atoms by Surface Dangling Bonds (Adv. Mater. 44/2019). Advanced Materials, 2019, 31, 1970316.	21.0	1
220	Frontispiece: A Supported Nickel Catalyst Stabilized by a Surface Digging Effect for Efficient Methane Oxidation. Angewandte Chemie - International Edition, 2019, 58, .	13.8	1
221	Visualization of Shallowâ€Groove Expansion of Au(111) Facet under Methane Pyrolysis. Advanced Materials Interfaces, 2020, 7, 2001245.	3.7	1
222	Anomalous detwinning in constrained Cu nanoparticles. Nanoscale, 2020, 12, 14831-14837.	5.6	1
223	Estimation of the spatial distribution of Frenkel defects in NiFe2O4 by simulation of HAADF-STEM images. Nanoscale, 2020, 12, 22668-22673.	5.6	1
224	Single-unit-cell-thick layered electrocatalysts: from synthesis to application. Nanoscale Advances, 2020, 2, 2678-2687.	4.6	1
225	CO ₂ Reduction: Oxygen Doping Induced by Nitrogen Vacancies in Nb ₄ N ₅ Enables Highly Selective CO ₂ Reduction (Small 2/2020). Small, 2020, 16, 2070007.	10.0	1
226	Palladium–Silver Nanowires: Alloyed Palladium–Silver Nanowires Enabling Ultrastable Carbon Dioxide Reduction to Formate (Adv. Mater. 4/2021). Advanced Materials, 2021, 33, 2170027.	21.0	1
227	Rþcktitelbild: Potentialâ€Cycling Synthesis of Single Platinum Atoms for Efficient Hydrogen Evolution in Neutral Media (Angew. Chem. 44/2017). Angewandte Chemie, 2017, 129, 14088-14088.	2.0	0
228	Multilayer-by-multilayer surface melting of Cu(200). Physical Review B, 2018, 98, .	3.2	0
229	Superstructures: Directing Gold Nanoparticles into Freeâ€Standing Honeycombâ€Like Ordered Mesoporous Superstructures (Small 31/2019). Small, 2019, 15, 1970165.	10.0	0
230	Frontispiz: A Supported Nickel Catalyst Stabilized by a Surface Digging Effect for Efficient Methane Oxidation. Angewandte Chemie, 2019, 131, .	2.0	0
231	Bifunctional Electrocatalysts: Cobaltâ^ʾIron Oxide Nanosheets for Highâ€Efficiency Solarâ€Driven CO ₂ â^ʾH ₂ O Coupling Electrocatalytic Reactions (Adv. Funct. Mater. 31/2020). Advanced Functional Materials, 2020, 30, 2070211.	14.9	0
232	Inside Front Cover: Rh ₂ S ₃ /Nâ€Doped Carbon Hybrids as pHâ€Universal Bifunctional Electrocatalysts for Energyâ€Saving Hydrogen Evolution (Small Methods 9/2020). Small Methods, 2020, 4, 2070035.	8.6	0