
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4034969/publications.pdf Version: 2024-02-01

Ιναν Ζανονι

#	Article	IF	CITATIONS
1	Inhibition of transcription factor NFAT activity in activated platelets enhances their aggregation and exacerbates gram-negative bacterial septicemia. Immunity, 2022, 55, 224-236.e5.	14.3	11
2	An aluminum hydroxide:CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor binding domain vaccine in aged mice. Science Translational Medicine, 2022, 14, .	12.4	57
3	An adjuvant strategy enabled by modulation of the physical properties of microbial ligands expands antigen immunogenicity. Cell, 2022, 185, 614-629.e21.	28.9	40
4	Efficient treatment of a preclinical inflammatory bowel disease model with engineered bacteria. Molecular Therapy - Methods and Clinical Development, 2021, 20, 218-226.	4.1	11
5	Deep-sea microbes as tools to refine the rules of innate immune pattern recognition. Science Immunology, 2021, 6, .	11.9	21
6	Inositol 1,4,5-trisphosphate 3-kinase B promotes Ca ²⁺ mobilization and the inflammatory activity of dendritic cells. Science Signaling, 2021, 14, .	3.6	15
7	Dooming Phagocyte Responses: Inflammatory Effects of Endogenous Oxidized Phospholipids. Frontiers in Endocrinology, 2021, 12, 626842.	3.5	18
8	Dissecting the common and compartment-specific features of COVID-19 severity in the lung and periphery with single-cell resolution. IScience, 2021, 24, 102738.	4.1	6
9	Viral Respiratory Pathogens and Lung Injury. Clinical Microbiology Reviews, 2021, 34, .	13.6	76
10	Notch4 signaling limits regulatory T-cell-mediated tissue repair and promotes severe lung inflammation in viral infections. Immunity, 2021, 54, 1186-1199.e7.	14.3	71
11	The interferon landscape along the respiratory tract impacts the severity of COVID-19. Cell, 2021, 184, 4953-4968.e16.	28.9	165
12	Interfering with SARS-CoV-2: are interferons friends or foes in COVID-19?. Current Opinion in Virology, 2021, 50, 119-127.	5.4	32
13	<i>JEM</i> career launchpad. Journal of Experimental Medicine, 2021, 218, .	8.5	0
14	Zinc-dependent histone deacetylases drive neutrophil extracellular trap formation and potentiate local and systemic inflammation. IScience, 2021, 24, 103256.	4.1	26
15	An aluminum hydroxide:CpG adjuvant enhances protection elicited by a SARS-CoV-2 receptor-binding domain vaccine in aged mice. Science Translational Medicine, 2021, , eabj5305.	12.4	4
16	Bariatric surgery, compared to medical treatment, reduces morbidity at all ages but does not reduce mortality in patients aged < 43Âyears, especially if diabetes mellitus is present: a post hoc analysis of two retrospective cohort studies. Acta Diabetologica, 2020, 57, 323-333.	2.5	13
17	Endogenous oxidized phospholipids reprogram cellular metabolism and boost hyperinflammation. Nature Immunology, 2020, 21, 42-53.	14.5	112
18	Inflammasomes within Hyperactive Murine Dendritic Cells Stimulate Long-Lived T Cell-Mediated Anti-tumor Immunity. Cell Reports, 2020, 33, 108381.	6.4	86

#	Article	IF	CITATIONS
19	Targeting innate immunity by blocking CD14: Novel approach to control inflammation and organ dysfunction in COVID-19 illness. EBioMedicine, 2020, 57, 102836.	6.1	37
20	Type III interferons: Balancing tissue tolerance and resistance to pathogen invasion. Journal of Experimental Medicine, 2020, 217, .	8.5	101
21	COVID-19 and emerging viral infections: The case for interferon lambda. Journal of Experimental Medicine, 2020, 217, .	8.5	177
22	Type III interferons disrupt the lung epithelial barrier upon viral recognition. Science, 2020, 369, 706-712.	12.6	301
23	Cellular and molecular mechanisms of antifungal innate immunity at epithelial barriers: The role of Câ€ŧype lectin receptors. European Journal of Immunology, 2020, 50, 317-325.	2.9	15
24	Microbiome studies in the medical sciences and the need for closer multidisciplinary interplay. Science Signaling, 2020, 13, .	3.6	4
25	Are nanotechnological approaches the future of treating inflammatory diseases?. Nanomedicine, 2019, 14, 2379-2390.	3.3	8
26	Editorial: Interferon-λs: New Regulators of Inflammatory Processes. Frontiers in Immunology, 2019, 10, 2117.	4.8	6
27	Below the surface: The inner lives of TLR4 and TLR9. Journal of Leukocyte Biology, 2019, 106, 147-160.	3.3	97
28	Lambda interferons come to light: dual function cytokines mediating antiviral immunity and damage control. Current Opinion in Immunology, 2019, 56, 67-75.	5.5	70
29	Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence. PLoS Pathogens, 2018, 14, e1007076.	4.7	54
30	Dendritic Cells in the Cross Hair for the Generation of Tailored Vaccines. Frontiers in Immunology, 2018, 9, 1484.	4.8	17
31	Deep Dermal Injection As a Model of Candida albicans Skin Infection for Histological Analyses. Journal of Visualized Experiments, 2018, , .	0.3	4
32	By Capturing Inflammatory Lipids Released from Dying Cells, the Receptor CD14 Induces Inflammasome-Dependent Phagocyte Hyperactivation. Immunity, 2017, 47, 697-709.e3.	14.3	149
33	Skin infections are eliminated by cooperation of the fibrinolytic and innate immune systems. Science Immunology, 2017, 2, .	11.9	22
34	Drug nanocarriers to treat autoimmunity and chronic inflammatory diseases. Seminars in Immunology, 2017, 34, 61-67.	5.6	69
35	IFN-λ suppresses intestinal inflammation by non-translational regulation of neutrophil function. Nature Immunology, 2017, 18, 1084-1093.	14.5	195
36	Interferon (IFN)-λ Takes the Helm: Immunomodulatory Roles of Type III IFNs. Frontiers in Immunology, 2017, 8, 1661.	4.8	96

#	Article	IF	CITATIONS
37	Inflammatory role of dendritic cells in Amyotrophic Lateral Sclerosis revealed by an analysis of patients' peripheral blood. Scientific Reports, 2017, 7, 7853.	3.3	33
38	An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science, 2016, 352, 1232-1236.	12.6	419
39	Prolonged contact with dendritic cells turns lymph nodeâ€resident <scp>NK</scp> cells into antiâ€tumor effectors. EMBO Molecular Medicine, 2016, 8, 1039-1051.	6.9	30
40	Preparation of Single-cell Suspensions for Cytofluorimetric Analysis from Different Mouse Skin Regions. Journal of Visualized Experiments, 2016, , e52589.	0.3	12
41	Cream Formulation Impact on Topical Administration of Engineered Colloidal Nanoparticles. PLoS ONE, 2015, 10, e0126366.	2.5	20
42	A Single Bacterial Immune Evasion Strategy Dismantles Both MyD88 and TRIF Signaling Pathways Downstream of TLR4. Cell Host and Microbe, 2015, 18, 682-693.	11.0	44
43	Innate Immune Pattern Recognition: A Cell Biological Perspective. Annual Review of Immunology, 2015, 33, 257-290.	21.8	1,133
44	Mechanisms of Toll-like Receptor 4 Endocytosis Reveal a Common Immune-Evasion Strategy Used by Pathogenic and Commensal Bacteria. Immunity, 2015, 43, 909-922.	14.3	131
45	Toll-like receptor co-receptors as master regulators of the immune response. Molecular Immunology, 2015, 63, 143-152.	2.2	83
46	rBet v 1 immunotherapy of sensitized mice with Streptococcus thermophilus as vehicle and adjuvant. Human Vaccines and Immunotherapeutics, 2014, 10, 1228-1237.	3.3	10
47	The Nature of Activatory and Tolerogenic Dendritic Cell-Derived Signal 2. Frontiers in Immunology, 2014, 5, 42.	4.8	5
48	<scp>W</scp> iskott– <scp>A</scp> ldrich syndrome protein deficiency in natural killer and dendritic cells affects antitumor immunity. European Journal of Immunology, 2014, 44, 1039-1045.	2.9	29
49	Modulation of CD14 and TLR4â‹MDâ€⊋ Activities by a Synthetic Lipid A Mimetic. ChemBioChem, 2014, 15, 250-258.	2.6	44
50	Murein Lytic Enzyme TgaA of Bifidobacterium bifidum MIMBb75 Modulates Dendritic Cell Maturation through Its Cysteine- and Histidine-Dependent Amidohydrolase/Peptidase (CHAP) Amidase Domain. Applied and Environmental Microbiology, 2014, 80, 5170-5177.	3.1	27
51	IL-15 cis Presentation Is Required for Optimal NK Cell Activation in Lipopolysaccharide-Mediated Inflammatory Conditions. Cell Reports, 2013, 4, 1235-1249.	6.4	66
52	Migratory conventional dendritic cells in the induction of peripheral T cell tolerance. Journal of Leukocyte Biology, 2013, 94, 903-911.	3.3	13
53	Systemically administered DNA and fowlpox recombinants expressing four vaccinia virus genes although immunogenic do not protect mice against the highly pathogenic IHD-J vaccinia strain. Virus Research, 2013, 178, 374-382.	2.2	6
54	A novel bioactive peptide: assessing its activity over murine neural stem cells and its potential for neural tissue engineering. New Biotechnology, 2013, 30, 552-562.	4.4	56

#	Article	IF	CITATIONS
55	The Nature of Activatory and Tolerogenic Dendritic Cell-Derived Signal 2. Frontiers in Immunology, 2013, 4, 198.	4.8	3
56	Role of CD14 in host protection against infections and in metabolism regulation. Frontiers in Cellular and Infection Microbiology, 2013, 3, 32.	3.9	201
57	Modeling Leukocyte-Leukocyte Non-Contact Interactions in a Lymph Node. PLoS ONE, 2013, 8, e76756.	2.5	0
58	Migratory, and not lymphoid-resident, dendritic cells maintain peripheral self-tolerance and prevent autoimmunity via induction of iTreg cells. Blood, 2012, 120, 1237-1245.	1.4	79
59	Luminescent Rhenium and Ruthenium Complexes of an Amphoteric Poly(amidoamine) Functionalized with 1,10-Phenanthroline. Inorganic Chemistry, 2012, 51, 12776-12788.	4.0	35
60	Luminescent Conjugates between Dinuclear Rhenium Complexes and Peptide Nucleic Acids (PNA): Synthesis, Photophysical Characterization, and Cell Uptake. Organometallics, 2012, 31, 5918-5928.	2.3	40
61	Similarities and differences of innate immune responses elicited by smooth and rough LPS. Immunology Letters, 2012, 142, 41-47.	2.5	42
62	Regulation and dysregulation of innate immunity by <scp>NFAT</scp> signaling downstream of pattern recognition receptors (PRRs). European Journal of Immunology, 2012, 42, 1924-1931.	2.9	60
63	CD14 and NFAT mediate lipopolysaccharide-induced skin edema formation in mice. Journal of Clinical Investigation, 2012, 122, 1747-1757.	8.2	36
64	The Timing of IFNÎ ² Production Affects Early Innate Responses to Listeria monocytogenes and Determines the Overall Outcome of Lethal Infection. PLoS ONE, 2012, 7, e43455.	2.5	22
65	The regulatory role of dendritic cells in the induction and maintenance of T-cell tolerance. Autoimmunity, 2011, 44, 23-32.	2.6	28
66	CD14 Controls the LPS-Induced Endocytosis of Toll-like Receptor 4. Cell, 2011, 147, 868-880.	28.9	765
67	Vaccination with filamentous bacteriophages targeting DECâ€205 induces DC maturation and potent antiâ€ŧumor Tâ€cell responses in the absence of adjuvants. European Journal of Immunology, 2011, 41, 2573-2584.	2.9	48
68	Uniform Lipopolysaccharide (LPS)‣oaded Magnetic Nanoparticles for the Investigation of LPS–TLR4 Signaling. Angewandte Chemie - International Edition, 2011, 50, 622-626.	13.8	44
69	Two photon microscopy intravital study of DC-mediated anti-tumor response of NK cells. Proceedings of SPIE, 2010, , .	0.8	0
70	Deciphering the complexity of Toll-like receptor signaling. Cellular and Molecular Life Sciences, 2010, 67, 4109-4134.	5.4	133
71	Regulation of antigen uptake, migration, and lifespan of dendritic cell by Toll-like receptors. Journal of Molecular Medicine, 2010, 88, 873-880.	3.9	53
72	A Dairy Bacterium Displays <i>I n V itro</i> Probiotic Properties for the Pharyngeal Mucosa by Antagonizing Group A Streptococci and Modulating the Immune Response. Infection and Immunity, 2010, 78, 4734-4743.	2.2	34

#	Article	IF	CITATIONS
73	DC-ATLAS: a systems biology resource to dissect receptor specific signal transduction in dendritic cells. Immunome Research, 2010, 6, 10.	0.1	23
74	Differences in lipopolysaccharide-induced signaling between conventional dendritic cells and macrophages. Immunobiology, 2010, 215, 709-712.	1.9	35
75	Luminescent conjugates between dinuclear rhenium(i) complexes and peptide nucleic acids (PNA) for cell imaging and DNA targeting. Chemical Communications, 2010, 46, 6255.	4.1	83
76	Accumulative Difference Image Protocol for Particle Tracking in Fluorescence Microscopy Tested in Mouse Lymphonodes. PLoS ONE, 2010, 5, e12216.	2.5	5
77	The dendritic cell life cycle. Cell Cycle, 2009, 8, 3816-3821.	2.6	29
78	CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation. Nature, 2009, 460, 264-268.	27.8	279
79	Dendritic Cells and Macrophages: Same Receptors but Different Functions. Current Immunology Reviews, 2009, 5, 311-325.	1.2	10
80	Central role of dendritic cells in the regulation and deregulation of immune responses. Cellular and Molecular Life Sciences, 2008, 65, 1683-1697.	5.4	78
81	Image filtering for two-photon deep imaging of lymphonodes. European Biophysics Journal, 2008, 37, 979-987.	2.2	20
82	Role of Toll like receptor-activated dendritic cells in the development of autoimmunity. Frontiers in Bioscience - Landmark, 2008, Volume, 4817.	3.0	11
83	CD14â€dependent and TLRâ€4â€independent Ca2+/calcineurin pathway activation by LPS in dendritic cells leading to efficient COXâ€2 production. FASEB Journal, 2008, 22, 672.11.	0.5	0
84	Inhibition of Lipidâ€A Stimulated Activation of Human Dendritic Cells and Macrophages by Amino and Hydroxylamino Monosaccharides. Angewandte Chemie - International Edition, 2007, 46, 3308-3312.	13.8	28
85	Self-tolerance, dendritic cell (DC)-mediated activation and tissue distribution of natural killer (NK) cells. Immunology Letters, 2007, 110, 6-17.	2.5	23
86	Transcriptional Profiling of Dendritic Cells in Response to Pathogens. , 2006, , 461-486.		0
87	Effects of dexamethazone on LPS-induced activationand migration of mouse dendritic cells revealed by a genome-wide transcriptional analysis. European Journal of Immunology, 2006, 36, 1504-1515.	2.9	51
88	To the Editor. European Journal of Immunology, 2006, 36, 2819-2820.	2.9	12
89	Induction of Peripheral T Cell Tolerance by Antigen-Presenting B Cells. I. Relevance of Antigen Presentation Persistence. Journal of Immunology, 2006, 176, 4012-4020.	0.8	24
90	Induction of Peripheral T Cell Tolerance by Antigen-Presenting B Cells. II. Chronic Antigen Presentation Overrules Antigen-Presenting B Cell Activation. Journal of Immunology, 2006, 176, 4021-4028.	0.8	29

#	Article	IF	CITATIONS
91	TLR-Dependent Activation Stimuli Associated with Th1 Responses Confer NK Cell Stimulatory Capacity to Mouse Dendritic Cells. Journal of Immunology, 2005, 175, 286-292.	0.8	62
92	A Contribution of Mouse Dendritic Cell–Derived IL-2 for NK Cell Activation. Journal of Experimental Medicine, 2004, 200, 287-295.	8.5	200
93	The Regulatory Role of Dendritic Cells in the Immune Response. International Archives of Allergy and Immunology, 2004, 134, 179-185.	2.1	19
94	NEW EMBO MEMBER'S REVIEW: Dendritic cell regulation of immune responses: a new role for interleukin 2 at the intersection of innate and adaptive immunity. EMBO Journal, 2003, 22, 2546-2551.	7.8	100
95	The Immune Response Is Initiated by Dendritic Cells via Interaction with Microorganisms and Interleukinâ€⊋ Production. Journal of Infectious Diseases, 2003, 187, S346-S350.	4.0	23
96	Anti-type I interferon antibodies as a cause of severe COVID-19. , 0, 11, .		2