
Michael S Titus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4034822/publications.pdf Version: 2024-02-01

ΜΙCHAELS ΤΙΤΙΙS

#	Article	IF	CITATIONS
1	First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L1.	8.3	2,264
2	First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophysical Journal Letters, 2019, 875, L6.	8.3	897
3	First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophysical Journal Letters, 2019, 875, L5.	8.3	814
4	First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L4.	8.3	806
5	Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Nature, 2008, 455, 78-80.	27.8	699
6	First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophysical Journal Letters, 2019, 875, L2.	8.3	618
7	First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophysical Journal Letters, 2022, 930, L12.	8.3	568
8	First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophysical Journal Letters, 2019, 875, L3.	8.3	519
9	Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87. Science, 2012, 338, 355-358.	12.6	336
10	First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophysical Journal Letters, 2021, 910, L13.	8.3	297
11	First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophysical Journal Letters, 2021, 910, L12.	8.3	215
12	First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophysical Journal Letters, 2022, 930, L17.	8.3	215
13	First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophysical Journal Letters, 2022, 930, L16.	8.3	187
14	Resolved magnetic-field structure and variability near the event horizon of Sagittarius A*. Science, 2015, 350, 1242-1245.	12.6	176
15	The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project. Astrophysical Journal, Supplement Series, 2019, 243, 26.	7.7	175
16	1.3 mm WAVELENGTH VLBI OF SAGITTARIUS A*: DETECTION OF TIME-VARIABLE EMISSION ON EVENT HORIZON SCALES. Astrophysical Journal Letters, 2011, 727, L36.	8.3	169
17	First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophysical Journal Letters, 2022, 930, L14.	8.3	163
18	Creep-induced planar defects in L12-containing Co- and CoNi-base single-crystal superalloys. Acta Materialia, 2015, 82, 530-539.	7.9	147

MICHAEL S TITUS

#	Article	IF	CITATIONS
19	First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophysical Journal Letters, 2022, 930, L13.	8.3	142
20	Creep and directional coarsening in single crystals of new γ–γ′ cobalt-base alloys. Scripta Materialia, 2012, 66, 574-577.	5.2	141
21	First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. Astrophysical Journal Letters, 2022, 930, L15.	8.3	137
22	High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloys. Acta Materialia, 2015, 89, 423-437.	7.9	127
23	230 GHz VLBI OBSERVATIONS OF M87: EVENTâ€HORIZONâ€6CALE STRUCTURE DURING AN ENHANCED VERYâ€HIGHâ€ENERGY \$gamma \$â€RAY STATE IN 2012. Astrophysical Journal, 2015, 807, 150.	4.5	98
24	Creep deformation-induced antiphase boundaries in L1 2 -containing single-crystal cobalt-base superalloys. Acta Materialia, 2014, 77, 352-359.	7.9	92
25	Oxidation Behavior between 700 and 1300 °C of Refractory TiZrNbHfTa Highâ€Entropy Alloys Containing Aluminum. Advanced Engineering Materials, 2018, 20, 1700948.	3.5	88
26	Detection of Intrinsic Source Structure at â ^{^1} /43 Schwarzschild Radii with Millimeter-VLBI Observations of SAGITTARIUS A*. Astrophysical Journal, 2018, 859, 60.	4.5	67
27	Polarimetric Properties of Event Horizon Telescope Targets from ALMA. Astrophysical Journal Letters, 2021, 910, L14.	8.3	67
28	PERSISTENT ASYMMETRIC STRUCTURE OF SAGITTARIUS A* ON EVENT HORIZON SCALES. Astrophysical Journal, 2016, 820, 90.	4.5	65
29	Event Horizon Telescope observations of the jet launching and collimation in Centaurus A. Nature Astronomy, 2021, 5, 1017-1028.	10.1	65
30	Solute segregation and deviation from bulk thermodynamics at nanoscale crystalline defects. Science Advances, 2016, 2, e1601796.	10.3	56
31	Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2021, 911, L11.	8.3	56
32	Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution. Astronomy and Astrophysics, 2020, 640, A69.	5.1	54
33	Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope. Astrophysical Journal, 2020, 901, 67.	4.5	51
34	Materials response to glancing incidence femtosecond laser ablation. Acta Materialia, 2017, 124, 37-46.	7.9	47
35	THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. Astrophysical Journal, 2020, 897, 139.	4.5	47
36	Shearing of γ' particles in Co-base and Co-Ni-base superalloys. Acta Materialia, 2018, 161, 99-109.	7.9	45

MICHAEL S TITUS

#	Article	IF	CITATIONS
37	Verification of Radiative Transfer Schemes for the EHT. Astrophysical Journal, 2020, 897, 148.	4.5	44
38	The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole. Astrophysical Journal, 2021, 912, 35.	4.5	43
39	Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2022, 930, L19.	8.3	43
40	Transmission scanning electron microscopy: Defect observations and image simulations. Ultramicroscopy, 2018, 186, 49-61.	1.9	42
41	FINE-SCALE STRUCTURE OF THE QUASAR 3C 279 MEASURED WITH 1.3 mm VERY LONG BASELINE INTERFEROMETRY. Astrophysical Journal, 2013, 772, 13.	4.5	30
42	Thermal expansion behavior of new Co-based alloys and implications for coatings. Surface and Coatings Technology, 2016, 289, 61-68.	4.8	27
43	Dislocation injection in strontium titanate by femtosecond laser pulses. Journal of Applied Physics, 2015, 118, .	2.5	21
44	Selective Dynamical Imaging of Interferometric Data. Astrophysical Journal Letters, 2022, 930, L18.	8.3	21
45	Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI. Astrophysical Journal Letters, 2022, 930, L21.	8.3	20
46	A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows. Astrophysical Journal Letters, 2022, 930, L20.	8.3	20
47	Role of vibrational and configurational excitations in stabilizing the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>L</mml:mi><mml:msub><mml:m in Co-rich Co-Al-W alloys. Physical Review B, 2015, 92, .</mml:m </mml:msub></mml:mrow></mml:math 	n>B¢ ⊉ mml	:m ¤9 <mml:m< td=""></mml:m<>
48	Tunability of martensitic transformation in Mg-Sc shape memory alloys: A DFT study. Acta Materialia, 2020, 189, 1-9.	7.9	14
49	Creep Behavior of Quinary γ′-Strengthened Co-Based Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 4090-4098.	2.2	10
50	Structure and tensile properties of Mx(MnFeCoNi)100-x solid solution strengthened high entropy alloys. Materialia, 2020, 9, 100539.	2.7	10
51	First-principles study of Suzuki segregation at stacking faults in disordered face-centered cubic Co-Ni alloys. Acta Materialia, 2021, 221, 117358.	7.9	9
52	VLBI measurement of the vector baseline between geodetic antennas at Kokee Park Geophysical Observatory, Hawaii. Journal of Geodesy, 2021, 95, 65.	3.6	8
53	Uncovering the role of nanoscale precipitates on martensitic transformation and superelasticity. Acta Materialia, 2022, 229, 117790.	7.9	8
54	The Variability of the Black Hole Image in M87 at the Dynamical Timescale. Astrophysical Journal, 2022, 925, 13.	4.5	6

MICHAEL S TITUS

#	Article	IF	CITATIONS
55	Planar Front Growth of Single Crystal Ni-Based Superalloy René N515. Jom, 2020, 72, 1794-1802.	1.9	1
56	Automated approach to discover coherent precipitates in multi-component shape memory alloys. Computational Materials Science, 2021, 197, 110651.	3.0	1
57	Martensitic transformation in superlattices of two non-transforming metals. Journal of Applied Physics, 2021, 130, 165105.	2.5	1
58	Supersolvus Hot Workability and Dynamic Recrystallization in Wrought Co–Al–W-Base Alloys. Minerals, Metals and Materials Series, 2020, , 857-869.	0.4	0