Qi-Zhu Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4032635/publications.pdf

Version: 2024-02-01

	57758	79698
7,226	44	73
citations	h-index	g-index
170	170	7460
1/9	1/9	7463
docs citations	times ranked	citing authors
	7,226 citations 179 docs citations	7,226 44 citations h-index 179 179

#	Article	IF	CITATIONS
1	By restoring autophagic flux and improving mitochondrial function, corosolic acid protects against Dox-induced cardiotoxicity. Cell Biology and Toxicology, 2022, 38, 451-467.	5.3	16
2	Neuraminidase 1 deficiency attenuates cardiac dysfunction, oxidative stress, fibrosis, inflammatory via AMPK-SIRT3 pathway in diabetic cardiomyopathy mice. International Journal of Biological Sciences, 2022, 18, 826-840.	6.4	40
3	Cellular Senescence in Cardiovascular Diseases: A Systematic Review. , 2022, 13, 103.		55
4	Underlying the Mechanisms of Doxorubicin-Induced Acute Cardiotoxicity: Oxidative Stress and Cell Death. International Journal of Biological Sciences, 2022, 18, 760-770.	6.4	81
5	Fibronectin type III domainâ€containing 5 improves agingâ€related cardiac dysfunction in mice. Aging Cell, 2022, 21, e13556.	6.7	45
6	Diosmetin Protects against Cardiac Hypertrophy via p62/Keap1/Nrf2 Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-14.	4.0	7
7	Bone morphogenetic protein 10 alleviates doxorubicin-induced cardiac injury via signal transducer and activator of transcription 3 signaling pathway. Bioengineered, 2022, 13, 7471-7484.	3.2	5
8	Screening of Lipid Metabolism-Related Gene Diagnostic Signature for Patients With Dilated Cardiomyopathy. Frontiers in Cardiovascular Medicine, 2022, 9, 853468.	2.4	2
9	Contribution of CYP19A1, CYP1A1, and CYP1A2 polymorphisms in coronary heart disease risk among the Chinese Han population. Functional and Integrative Genomics, 2022, , 1.	3.5	1
10	Lupeol protects against cardiac hypertrophy via TLR4-PI3K-Akt-NF-κB pathways. Acta Pharmacologica Sinica, 2022, 43, 1989-2002.	6.1	16
11	Neutrophil degranulation and myocardial infarction. Cell Communication and Signaling, 2022, 20, 50.	6.5	25
12	NEU1 Regulates Mitochondrial Energy Metabolism and Oxidative Stress Post-myocardial Infarction in Mice via the SIRT1/PGC-1 Alpha Axis. Frontiers in Cardiovascular Medicine, 2022, 9, 821317.	2.4	16
13	Liquiritin Attenuates Pathological Cardiac Hypertrophy by Activating the PKA/LKB1/AMPK Pathway. Frontiers in Pharmacology, 2022, 13, 870699.	3.5	9
14	Fibronectin type III domain-containing 5 in cardiovascular and metabolic diseases: a promising biomarker and therapeutic target. Acta Pharmacologica Sinica, 2021, 42, 1390-1400.	6.1	14
15	Critical roles of macrophages in pressure overload-induced cardiac remodeling. Journal of Molecular Medicine, 2021, 99, 33-46.	3.9	10
16	Matrine attenuates pathological cardiac fibrosis via RPS5/p38 in mice. Acta Pharmacologica Sinica, 2021, 42, 573-584.	6.1	87
17	Sirtuin 6: A potential therapeutic target for cardiovascular diseases. Pharmacological Research, 2021, 163, 105214.	7.1	29
18	Self-powered cardiovascular electronic devices and systems. Nature Reviews Cardiology, 2021, 18, 7-21.	13.7	206

#	Article	lF	Citations
19	6-Gingerol protects against cardiac remodeling by inhibiting the p38 mitogen-activated protein kinase pathway. Acta Pharmacologica Sinica, 2021, 42, 1575-1586.	6.1	27
20	Exosomes secreted by chemoresistant ovarian cancer cells promote angiogenesis. Journal of Ovarian Research, 2021, 14, 7.	3.0	14
21	Cardiac Biomarker Abnormalities Are Closely Related to Prognosis in Patients with COVID-19. International Heart Journal, 2021, 62, 148-152.	1.0	10
22	Endothelial ERG alleviates cardiac fibrosis via blocking endothelin-1-dependent paracrine mechanism. Cell Biology and Toxicology, 2021, 37, 873-890.	5.3	55
23	Liquiritin Attenuates Lipopolysaccharides-Induced Cardiomyocyte Injury via an AMP-Activated Protein Kinase-Dependent Signaling Pathway. Frontiers in Pharmacology, 2021, 12, 648688.	3.5	23
24	Isoquercitrin protects HUVECs against high glucose‑induced apoptosis through regulating p53 proteasomal degradation. International Journal of Molecular Medicine, 2021, 48, .	4.0	13
25	Osteocrin, a novel myokine, prevents diabetic cardiomyopathy via restoring proteasomal activity. Cell Death and Disease, 2021, 12, 624.	6.3	45
26	High-Mobility Group A1 Promotes Cardiac Fibrosis by Upregulating FOXO1 in Fibroblasts. Frontiers in Cell and Developmental Biology, 2021, 9, 666422.	3.7	8
27	Apocynin attenuates diabetic cardiomyopathy by suppressing ASK1-p38/JNK signaling. European Journal of Pharmacology, 2021, 909, 174402.	3.5	8
28	Activation of Tollâ€like receptor 7 provides cardioprotection in septic cardiomyopathyâ€lnduced systolic dysfunction. Clinical and Translational Medicine, 2021, 11, e266.	4.0	20
29	BMI1 in the heart: Novel functions beyond tumorigenesis. EBioMedicine, 2021, 63, 103193.	6.1	13
30	Cardiomyocyte-Specific RIP2 Overexpression Exacerbated Pathologic Remodeling and Contributed to Spontaneous Cardiac Hypertrophy. Frontiers in Cell and Developmental Biology, 2021, 9, 688238.	3.7	4
31	TMEM173 protects against pressure overloadâ€induced cardiac hypertrophy by modulating autophagy. Journal of Cellular Physiology, 2021, 236, 5176-5192.	4.1	2
32	Knockout of AMPKα2 Blocked the Protection of Sestrin2 Overexpression Against Cardiac Hypertrophy Induced by Pressure Overload. Frontiers in Pharmacology, 2021, 12, 716884.	3.5	6
33	Activation of Nrf2 by Lithospermic Acid Ameliorates Myocardial Ischemia and Reperfusion Injury by Promoting Phosphorylation of AMP-Activated Protein Kinase α (AMPKα). Frontiers in Pharmacology, 2021, 12, 794982.	3.5	6
34	Mitochondria in Pathological Cardiac Hypertrophy Research and Therapy. Frontiers in Cardiovascular Medicine, 2021, 8, 822969.	2.4	20
35	FNDC5 alleviates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via activating AKT. Cell Death and Differentiation, 2020, 27, 540-555.	11.2	271
36	Andrographolide Protects Against Adverse Cardiac Remodeling After Myocardial Infarction through Enhancing Nrf2 Signaling Pathway. International Journal of Biological Sciences, 2020, 16, 12-26.	6.4	57

#	Article	IF	Citations
37	A brief overview about the physiology of fibronectin type III domain-containing 5. Cellular Signalling, 2020, 76, 109805.	3.6	13
38	Meteorin-like protein attenuates doxorubicin-induced cardiotoxicity via activating cAMP/PKA/SIRT1 pathway. Redox Biology, 2020, 37, 101747.	9.0	133
39	Toll-like receptor 5 deficiency diminishes doxorubicin-induced acute cardiotoxicity in mice. Theranostics, 2020, 10, 11013-11025.	10.0	33
40	Autophagy is involved in the protective effect of p21 on LPS-induced cardiac dysfunction. Cell Death and Disease, 2020, 11, 554.	6.3	26
41	S100A8/A9 in Myocardial Infarction: A Promising Biomarker and Therapeutic Target. Frontiers in Cell and Developmental Biology, 2020, 8, 603902.	3.7	25
42	The Roles of Noncardiomyocytes in Cardiac Remodeling. International Journal of Biological Sciences, 2020, 16, 2414-2429.	6.4	23
43	Coumestrol ameliorates doxorubicin-induced cardiotoxicity via activating AMPKα. Free Radical Research, 2020, 54, 629-639.	3.3	11
44	Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radical Biology and Medicine, 2020, 160, 303-318.	2.9	302
45	Nucleotide-Binding Oligomerization Domain-Like Receptor 3 Deficiency Attenuated Isoproterenol-Induced Cardiac Fibrosis via Reactive Oxygen Species/High Mobility Group Box 1 Protein Axis. Frontiers in Cell and Developmental Biology, 2020, 8, 713.	3.7	8
46	Deletion of Microfibrillarâ€Associated Protein 4 Attenuates Left Ventricular Remodeling and Dysfunction in Heart Failure. Journal of the American Heart Association, 2020, 9, e015307.	3.7	28
47	TLR9 deficiency alleviates doxorubicinâ€induced cardiotoxicity via the regulation of autophagy. Journal of Cellular and Molecular Medicine, 2020, 24, 10913-10923.	3.6	29
48	Research Progress on the Interaction Between Autophagy and Energy Homeostasis in Cardiac Remodeling. Frontiers in Pharmacology, 2020, 11, 587438.	3.5	10
49	The pro-migration and anti-apoptosis effects of HMGA2 in HUVECs stimulated by hypoxia. Cell Cycle, 2020, 19, 3534-3545.	2.6	7
50	Combination treatment of perifosine and valsartan showed more efficiency in protecting against pressure overload induced mouse heart failure. Journal of Pharmacological Sciences, 2020, 143, 199-208.	2.5	3
51	The effect of HMGA1 in LPS-induced Myocardial Inflammation. International Journal of Biological Sciences, 2020, 16, 1798-1810.	6.4	26
52	Management of heart failure patients with <scp>COVID</scp> â€19: a joint position paper of the Chinese Heart Failure Association & Samp; National Heart Failure Committee and the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure, 2020, 22, 941-956.	7.1	95
53	Levosimendan Protects against Doxorubicin-Induced Cardiotoxicity by Regulating the PTEN/Akt Pathway. BioMed Research International, 2020, 2020, 1-11.	1.9	9
54	Osteocrin attenuates inflammation, oxidative stress, apoptosis, and cardiac dysfunction in doxorubicinâ€induced cardiotoxicity. Clinical and Translational Medicine, 2020, 10, e124.	4.0	124

#	Article	IF	Citations
55	High-mobility group AT-hook 1 promotes cardiac dysfunction in diabetic cardiomyopathy via autophagy inhibition. Cell Death and Disease, 2020, $11,160.$	6.3	32
56	Geniposide protects against sepsis-induced myocardial dysfunction through AMPKα-dependent pathway. Free Radical Biology and Medicine, 2020, 152, 186-196.	2.9	49
57	Leukocyte immunoglobulin-like receptor B4 protects against cardiac hypertrophy via SHP-2-dependent inhibition of the NF-l ^o B pathway. Journal of Molecular Medicine, 2020, 98, 691-705.	3.9	11
58	Role of adiponectin in diabetes myocardial ischemia-reperfusion injury and ischemic postconditioning. Acta Cirurgica Brasileira, 2020, 35, e202000107.	0.7	9
59	Analysis of the incidence and baseline predictors of the left ventricular ejection fraction returning to normal after dilated cardiomyopathy in postmenopausal women: a retrospective, observational study. Journal of International Medical Research, 2020, 48, 030006052092247.	1.0	1
60	Protection against Doxorubicin-Induced Cytotoxicity by Geniposide Involves AMPK <i>α</i> Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-12.	4.0	13
61	Zingerone attenuates aortic bandingâ€induced cardiac remodelling via activating the eNOS/Nrf2 pathway. Journal of Cellular and Molecular Medicine, 2019, 23, 6466-6478.	3.6	19
62	Bcl6 Suppresses Cardiac Fibroblast Activation and Function via Directly Binding to Smad4. Current Medical Science, 2019, 39, 534-540.	1.8	6
63	Andrographolide Protects against HG-Induced Inflammation, Apoptosis, Migration, and Impairment of Angiogenesis via PI3K/AKT-eNOS Signalling in HUVECs. Mediators of Inflammation, 2019, 2019, 1-15.	3.0	59
64	Rosmarinic acid alleviates cardiomyocyte apoptosis via cardiac fibroblast in doxorubicin-induced cardiotoxicity. International Journal of Biological Sciences, 2019, 15, 556-567.	6.4	96
65	Indigo Fruits Ingredient, Aucubin, Protects against LPS-Induced Cardiac Dysfunction in Mice. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 348-359.	2.5	20
66	The 5-Lipoxygenase Inhibitor Zileuton Protects Pressure Overload-Induced Cardiac Remodeling via Activating PPAR $\langle i \rangle \hat{l} \pm \langle j \rangle$. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-17.	4.0	15
67	Identification of differentially expressed genes and preliminary validations in cardiac pathological remodeling induced by transverse aortic constriction. International Journal of Molecular Medicine, 2019, 44, 1447-1461.	4.0	20
68	The protective effect of high mobility group protein HMGA2 in pressure overload-induced cardiac remodeling. Journal of Molecular and Cellular Cardiology, 2019, 128, 160-178.	1.9	20
69	Oridonin protects against cardiac hypertrophy by promoting P21-related autophagy. Cell Death and Disease, 2019, 10, 403.	6.3	57
70	TLR9 is essential for HMGB1-mediated post-myocardial infarction tissue repair through affecting apoptosis, cardiac healing, and angiogenesis. Cell Death and Disease, 2019, 10, 480.	6.3	51
71	Cordycepin ameliorates cardiac hypertrophy via activating the AMPKα pathway. Journal of Cellular and Molecular Medicine, 2019, 23, 5715-5727.	3.6	21
72	STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biology, 2019, 24, 101215.	9.0	309

#	Article	IF	CITATIONS
73	Matrine attenuates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via maintaining AMPKα/UCP2 pathway. Acta Pharmaceutica Sinica B, 2019, 9, 690-701.	12.0	167
74	Galangin ameliorates cardiac remodeling via the MEK1/2–ERK1/2 and PI3K–AKT pathways. Journal of Cellular Physiology, 2019, 234, 15654-15667.	4.1	39
75	Piperine Alleviates Doxorubicin-Induced Cardiotoxicity via Activating PPAR- <i>\hat{l}^3</i> in Mice. PPAR Research, 2019, 2019, 1-11.	2.4	18
76	Myricetin Alleviates Pathological Cardiac Hypertrophy via TRAF6/TAK1/MAPK and Nrf2 Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-14.	4.0	39
77	C1q-tumour necrosis factor-related protein-3 exacerbates cardiac hypertrophy in mice. Cardiovascular Research, 2019, 115, 1067-1077.	3.8	63
78	SGLT1: A potential target for human ischemic and hypertrophic heart?. International Journal of Cardiology, 2018, 257, 37.	1.7	2
79	TAX1BP1 overexpression attenuates cardiac dysfunction and remodeling in STZ-induced diabetic cardiomyopathy in mice by regulating autophagy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1728-1743.	3.8	51
80	Overexpression of CTRP3 protects against sepsis-induced myocardial dysfunction in mice. Molecular and Cellular Endocrinology, 2018, 476, 27-36.	3.2	32
81	Aucubin protects against pressure overloadâ€induced cardiac remodelling <i>via</i> the β ₃ â€adrenoceptor–neuronal NOS cascades. British Journal of Pharmacology, 2018, 175, 1548-1566.	5.4	36
82	A potential therapeutic approach to cardiac remodeling: JDP2. International Journal of Cardiology, 2018, 254, 283.	1.7	1
83	Rosmarinic acid attenuates cardiac fibrosis following long-term pressure overload via AMPKα/Smad3 signaling. Cell Death and Disease, 2018, 9, 102.	6.3	106
84	Sanguinarine Attenuates Lipopolysaccharide-induced Inflammation and Apoptosis by Inhibiting the TLR4/NF-κB Pathway in H9c2 Cardiomyocytes. Current Medical Science, 2018, 38, 204-211.	1.8	39
85	T-bet deficiency attenuates cardiac remodelling in rats. Basic Research in Cardiology, 2018, 113, 19.	5.9	52
86	A77 1726 (leflunomide) blocks and reverses cardiac hypertrophy and fibrosis in mice. Clinical Science, 2018, 132, 685-699.	4.3	39
87	CTRP3 protected against doxorubicin-induced cardiac dysfunction, inflammation and cell death via activation of Sirt1. Journal of Molecular and Cellular Cardiology, 2018, 114, 38-47.	1.9	126
88	Aucubin Protects against $TGF\hat{l}^21$ -Induced Cardiac Fibroblasts Activation by Mediating the AMPK $\hat{l}_{\pm}/mTOR$ Signaling Pathway. Planta Medica, 2018, 84, 91-99.	1.3	15
89	Myricetin attenuated LPS induced cardiac injury <i>in vivo</i> and <i>in vitro</i> . Phytotherapy Research, 2018, 32, 459-470.	5.8	58
90	Transcriptional E2F1/ $2/5/8$ as potential targets and transcriptional E2F3/ $6/7$ as new biomarkers for the prognosis of human lung carcinoma. Aging, 2018, 10, 973-987.	3.1	70

#	Article	IF	Citations
91	Identification of Core Gene Biomarkers in Patients with Diabetic Cardiomyopathy. Disease Markers, 2018, 2018, 1-15.	1.3	20
92	Maslinic acid protects against pressure overload-induced cardiac hypertrophy in mice. Journal of Pharmacological Sciences, 2018, 138, 116-122.	2.5	14
93	Geniposide Protects against Obesity-Related Cardiac Injury through AMPK $\langle i \rangle \hat{i} \pm \langle i \rangle$ - and Sirt1-Dependent Mechanisms. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-12.	4.0	28
94	Icariside II attenuates cardiac remodeling via AMPKα2/mTORC1 inÂvivo and inÂvitro. Journal of Pharmacological Sciences, 2018, 138, 38-45.	2.5	13
95	Isoquercitrin Attenuated Cardiac Dysfunction Via AMPKαâ€Dependent Pathways in LPSâ€Treated Mice. Molecular Nutrition and Food Research, 2018, 62, e1800955.	3.3	45
96	Cardiac fibrosis: new insights into the pathogenesis. International Journal of Biological Sciences, 2018, 14, 1645-1657.	6.4	225
97	AdipoRon, an adiponectin receptor agonist, attenuates cardiac remodeling induced by pressure overload. Journal of Molecular Medicine, 2018, 96, 1345-1357.	3.9	42
98	miR-133: A Suppressor of Cardiac Remodeling?. Frontiers in Pharmacology, 2018, 9, 903.	3.5	91
99	The potential role of PPAR \hat{I}^3 in obesity-induced adipose tissue inflammation. International Journal of Cardiology, 2018, 266, 220.	1.7	3
100	Therapeutic Potential of Polyphenols in Cardiac Fibrosis. Frontiers in Pharmacology, 2018, 9, 122.	3.5	41
101	Aucubin Protects against Myocardial Infarction-Induced Cardiac Remodeling via nNOS/NO-Regulated Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-15.	4.0	26
102	Role of autophagy in a model of obesity: A long‑term high fat diet induces cardiac dysfunction. Molecular Medicine Reports, 2018, 18, 3251-3261.	2.4	20
103	Activating transcription factor 3 in cardiovascular diseases: a potential therapeutic target. Basic Research in Cardiology, 2018, 113, 37.	5.9	87
104	Geniposide Alleviates Isoproterenol-Induced Cardiac Fibrosis Partially via SIRT1 Activation in vivo and in vitro. Frontiers in Pharmacology, 2018, 9, 854.	3.5	39
105	Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy. International Journal of Molecular Medicine, 2017, 39, 199-207.	4.0	10
106	CTRP3 attenuates cardiac dysfunction, inflammation, oxidative stress and cell death in diabetic cardiomyopathy in rats. Diabetologia, 2017, 60, 1126-1137.	6.3	123
107	Apigenin alleviates STZ-induced diabetic cardiomyopathy. Molecular and Cellular Biochemistry, 2017, 428, 9-21.	3.1	37
108	Caffeic acid phenethyl ester attenuates pathological cardiac hypertrophy by regulation of MEK/ERK signaling pathway in vivo and vitro. Life Sciences, 2017, 181, 53-61.	4.3	26

#	Article	IF	Citations
109	Piperine Attenuates Pathological Cardiac Fibrosis Via PPAR-γ/AKT Pathways. EBioMedicine, 2017, 18, 179-187.	6.1	106
110	Cucurbitacin B Protects Against Pressure Overload Induced Cardiac Hypertrophy. Journal of Cellular Biochemistry, 2017, 118, 3899-3910.	2.6	43
111	Evodiamine attenuates TGF- \hat{l}^21 -induced fibroblast activation and endothelial to mesenchymal transition. Molecular and Cellular Biochemistry, 2017, 430, 81-90.	3.1	28
112	Evodiamine Prevents Isoproterenol-Induced Cardiac Fibrosis by Regulating Endothelial-to-Mesenchymal Transition. Planta Medica, 2017, 83, 761-769.	1.3	26
113	Arctiin protects against cardiac hypertrophy through inhibiting MAPKs and AKT signaling pathways. Journal of Pharmacological Sciences, 2017, 135, 97-104.	2.5	26
114	Mechanisms contributing to cardiac remodelling. Clinical Science, 2017, 131, 2319-2345.	4.3	132
115	Sesamin prevents apoptosis and inflammation after experimental myocardial infarction by JNK and NF-κB pathways. Food and Function, 2017, 8, 2875-2885.	4.6	58
116	Acacetin protects against cardiac remodeling after myocardial infarction by mediating MAPK and PI3K/Akt signal pathway. Journal of Pharmacological Sciences, 2017, 135, 156-163.	2.5	32
117	Serum Biomarker Identification by Mass Spectrometry in Acute Aortic Dissection. Cellular Physiology and Biochemistry, 2017, 44, 2147-2157.	1.6	18
118	Nobiletin, a Polymethoxy Flavonoid, Protects Against Cardiac Hypertrophy Induced by Pressure-Overload via Inhibition of NAPDH Oxidases and Endoplasmic Reticulum Stress. Cellular Physiology and Biochemistry, 2017, 42, 1313-1325.	1.6	34
119	Sesamin Protects Against Cardiac Remodeling Via Sirt3/ROS Pathway. Cellular Physiology and Biochemistry, 2017, 44, 2212-2227.	1.6	35
120	Baicalein protects against endothelial cell injury by inhibiting the TLR4/NFâ€ÎºB signaling pathway. Molecular Medicine Reports, 2017, 17, 3085-3091.	2.4	11
121	Myricetin Possesses Potential Protective Effects on Diabetic Cardiomyopathy through Inhibiting $ x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x ^2 < x $	4.0	64
122	Puerarin Protects against Cardiac Fibrosis Associated with the Inhibition of TGF- $\langle i \rangle \hat{l}^2 \langle i \rangle 1/S$ mad2-Mediated Endothelial-to-Mesenchymal Transition. PPAR Research, 2017, 2017, 1-14.	2.4	27
123	Red Blood Cell Distribution Width: A Novel Predictive Indicator for Cardiovascular and Cerebrovascular Diseases. Disease Markers, 2017, 2017, 1-23.	1.3	158
124	Bezafibrate Attenuates Pressure Overload-Induced Cardiac Hypertrophy and Fibrosis. PPAR Research, 2017, 2017, 1-12.	2.4	18
125	The Role of PPARs in Pathological Cardiac Hypertrophy and Heart Failure. Current Pharmaceutical Design, 2017, 23, 1677-1686.	1.9	19
126	Peroxisome Proliferator-Activated Receptor- $\langle i \rangle \hat{l}^3 \langle i \rangle$ Is Critical to Cardiac Fibrosis. PPAR Research, 2016, 2016, 1-12.	2.4	30

#	Article	IF	CITATIONS
127	Pioglitazone Protected against Cardiac Hypertrophy via Inhibiting AKT/GSK3 < i > \hat{l}^2 < /i > and MAPK Signaling Pathways. PPAR Research, 2016, 2016, 1-11.	2.4	35
128	Asiatic Acid Protects against Cardiac Hypertrophy through Activating AMPKα Signalling Pathway. International Journal of Biological Sciences, 2016, 12, 861-871.	6.4	60
129	Effects of hesperetin on platelet-derived growth factor-BB-induced pulmonary artery smooth muscle cell proliferation. Molecular Medicine Reports, 2016, 13, 955-960.	2.4	11
130	Shensongyangxin protects against pressure overload-induced cardiac hypertrophy. Molecular Medicine Reports, 2016, 13, 980-988.	2.4	4
131	Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: induced diabetic cardiomyopathy. Molecular and Cellular Biochemistry, 2016, 417, 87-96.	3.1	76
132	Mnk1 (Mitogen-Activated Protein Kinase–Interacting Kinase 1) Deficiency Aggravates Cardiac Remodeling in Mice. Hypertension, 2016, 68, 1393-1399.	2.7	30
133	Achievement of a target dose of bisoprolol may not be a preferred option for attenuating pressure overload-induced cardiac hypertrophy and fibrosis. Experimental and Therapeutic Medicine, 2016, 12, 2027-2038.	1.8	11
134	Puerarin attenuates the inflammatory response and apoptosis in LPS-stimulated cardiomyocytes. Experimental and Therapeutic Medicine, 2016, 11, 415-420.	1.8	38
135	OX40 regulates pressure overload-induced cardiac hypertrophy and remodelling via CD4+ T-cells. Clinical Science, 2016, 130, 2061-2071.	4.3	35
136	Protection against cardiac hypertrophy by geniposide involves the GLPâ€1 receptor / AMPKα signalling pathway. British Journal of Pharmacology, 2016, 173, 1502-1516.	5.4	94
137	Pleiotropic and puzzling effects of ATF3 in maladaptive cardiac remodeling. International Journal of Cardiology, 2016, 206, 87-88.	1.7	5
138	Sestrin family may play important roles in the regulation of cardiac pathophysiology. International Journal of Cardiology, 2016, 202, 183-184.	1.7	15
139	ATF3: A potential target for cardiac maladaptive remodeling. International Journal of Cardiology, 2016, 202, 50-51.	1.7	4
140	Sanguinarine inhibits angiotensin II-induced apoptosis in H9c2 cardiac cells via restoring reactive oxygen species-mediated decreases in the mitochondrial membrane potential. Molecular Medicine Reports, 2015, 12, 3400-3408.	2.4	20
141	3,3′-Diindolylmethane attenuates cardiac H9c2 cell hypertrophy through 5′-adenosine monophosphate-activated protein kinase-α. Molecular Medicine Reports, 2015, 12, 1247-1252.	2.4	13
142	Pachymic acid protects H9c2 cardiomyocytes from lipopolysaccharide-induced inflammation and apoptosis by inhibiting the extracellular signal-regulated kinase $1/2$ and p38 pathways. Molecular Medicine Reports, 2015, 12, 2807-2813.	2.4	25
143	Icariin protects H9c2 cardiomyocytes from lipopolysaccharide-induced injury via inhibition of the reactive oxygen species-dependent c-Jun N-terminal kinases/nuclear factor- \hat{l}^e B pathway. Molecular Medicine Reports, 2015, 11, 4327-4332.	2.4	23
144	Naringenin attenuates pressure overload-induced cardiac hypertrophy. Experimental and Therapeutic Medicine, 2015, 10, 2206-2212.	1.8	34

#	Article	IF	CITATIONS
145	MicroRNAâ€150 Protects Against Pressure Overloadâ€Induced Cardiac Hypertrophy. Journal of Cellular Biochemistry, 2015, 116, 2166-2176.	2.6	39
146	Cathepsin B deficiency attenuates cardiac remodeling in response to pressure overload via TNF- $\hat{l}\pm/ASK1/JNK$ pathway. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1143-H1154.	3.2	71
147	Oleanolic acid alleviated pressure overload-induced cardiac remodeling. Molecular and Cellular Biochemistry, 2015, 409, 145-154.	3.1	23
148	Soluble ST2 may possess special superiority as a risk predictor in heart failure patients. International Journal of Cardiology, 2015, 186, 146-147.	1.7	5
149	Toll-like receptor 5 deficiency attenuates interstitial cardiac fibrosis and dysfunction induced by pressure overload by inhibiting inflammation and the endothelial–mesenchymal transition. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2456-2466.	3.8	44
150	DIM attenuates TGF- \hat{l}^21 -induced myofibroblast differentiation in neonatal rat cardiac fibroblasts. International Journal of Clinical and Experimental Pathology, 2015, 8, 5121-8.	0.5	8
151	Icariin attenuates angiotensin II-induced hypertrophy and apoptosis in H9c2 cardiomyocytes by inhibiting reactive oxygen species-dependent JNK and p38 pathways. Experimental and Therapeutic Medicine, 2014, 7, 1116-1122.	1.8	33
152	Hesperetin attenuates mitochondria-dependent apoptosis in lipopolysaccharide-induced H9C2 cardiomyocytes. Molecular Medicine Reports, 2014, 9, 1941-1946.	2.4	36
153	ATF3 regulates multiple targets and may play a dual role in cardiac hypertrophy and injury. International Journal of Cardiology, 2014, 174, 838-839.	1.7	35
154	3,3′-Diindolylmethane improves myocardial energy metabolism imbalance induced by pressure overload via AMPKα in mice. International Journal of Cardiology, 2014, 177, 235-237.	1.7	4
155	Puerarin attenuates pressure overload-induced cardiac hypertrophy. Journal of Cardiology, 2014, 63, 73-81.	1.9	73
156	Attenuation of cardiac remodeling by indole-3-carbinol in mice is associated with improved energy metabolism. International Journal of Cardiology, 2014, 172, e531-e533.	1.7	10
157	Sanguinarine protects against pressure overload-induced cardiac remodeling via inhibition of nuclear factor-Î ^o B activation. Molecular Medicine Reports, 2014, 10, 211-216.	2.4	9
158	Never in Mitosis Gene A Related Kinase-6 Attenuates Pressure Overload-Induced Activation of the Protein Kinase B Pathway and Cardiac Hypertrophy. PLoS ONE, 2014, 9, e96095.	2.5	14
159	Atorvastatin ameliorates myocardial ischemia/reperfusion injury through attenuation of endoplasmic reticulum stress-induced apoptosis. International Journal of Clinical and Experimental Medicine, 2014, 7, 4915-23.	1.3	12
160	Paeoniflorin attenuates pressure overload-induced cardiac remodeling via inhibition of TGFβ/Smads and NF-κB pathways. Journal of Molecular Histology, 2013, 44, 357-367.	2.2	42
161	Baicalein protects against cardiac hypertrophy through blocking MEKâ€ERK1/2 signaling. Journal of Cellular Biochemistry, 2013, 114, 1058-1065.	2.6	37
162	3,3′-Diindolylmethane Protects against Cardiac Hypertrophy via 5′-Adenosine Monophosphate-Activated Protein Kinase-α2. PLoS ONE, 2013, 8, e53427.	2.5	24

#	Article	IF	CITATIONS
163	Stem Cell Antigen 1 Protects Against Cardiac Hypertrophy and Fibrosis After Pressure Overload. Hypertension, 2012, 60, 802-809.	2.7	33
164	Gastrodin protects against cardiac hypertrophy and fibrosis. Molecular and Cellular Biochemistry, 2012, 359, 9-16.	3.1	58
165	Activating Transcription Factor 3 Deficiency Promotes Cardiac Hypertrophy, Dysfunction, and Fibrosis Induced by Pressure Overload. PLoS ONE, 2011, 6, e26744.	2.5	75
166	Cardiac-specific mindin overexpression attenuates cardiac hypertrophy via blocking AKT/GSK3β and TGF-β1–Smad signalling. Cardiovascular Research, 2011, 92, 85-94.	3.8	81
167	LIM and Cysteine-Rich Domains 1 Regulates Cardiac Hypertrophy by Targeting Calcineurin/Nuclear Factor of Activated T Cells Signaling. Hypertension, 2010, 55, 257-263.	2.7	50
168	Crocetin protects against cardiac hypertrophy by blocking MEKâ€ERK1/2 signalling pathway. Journal of Cellular and Molecular Medicine, 2009, 13, 909-925.	3.6	76
169	Lysosomal cysteine peptidase cathepsin L protects against cardiac hypertrophy through blocking AKT/GSK3β signaling. Journal of Molecular Medicine, 2009, 87, 249-260.	3.9	70
170	Antiarrhythmic effect of atorvastatin on autoimmune myocarditis is mediated by improving myocardial repolarization. Life Sciences, 2007, 80, 601-608.	4. 3	24
171	Microarray analysis reveals the role of matrix metalloproteinases in mouse experimental autoimmune myocarditis induced by cardiac myosin peptides. Cellular and Molecular Biology Letters, 2007, 12, 176-91.	7.0	9
172	Hyperglycemia induces cardiomyocyte hypertrophy in part through PKCÎ ² 2 activation in cultured neonatal rat myocytes. FASEB Journal, 2006, 20, A692.	0.5	0