Simone P Niclou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4032297/publications.pdf

Version: 2024-02-01

117 papers 10,429 citations

52 h-index 98 g-index

122 all docs 122 docs citations

times ranked

122

19026 citing authors

#	Article	IF	CITATIONS
1	Enzymatic activity of glycosyltransferase GLT8D1 promotes human glioblastoma cell migration. IScience, 2022, 25, 103842.	4.1	5
2	Cancer cell heterogeneity and plasticity: A paradigm shift in glioblastoma. Neuro-Oncology, 2022, 24, 669-682.	1.2	77
3	Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell, 2022, 185, 2184-2199.e16.	28.9	163
4	Elucidating tumourâ€associated microglia/macrophage diversity along glioblastoma progression and under <scp><i>ACOD1</i></scp> deficiency. Molecular Oncology, 2022, 16, 3167-3191.	4.6	9
5	Cystathionine- \hat{I}^3 -lyase drives antioxidant defense in cysteine-restricted IDH1-mutant astrocytomas. Neuro-Oncology Advances, 2021, 3, vdab057.	0.7	10
6	Novel facets of glioma invasion. International Review of Cell and Molecular Biology, 2021, 360, 33-64.	3.2	17
7	Turning strength into weakness: protein degradation and autophagy as therapeutic targets in glioblastoma?. Neuro-Oncology, 2021, 23, 1041-1043.	1.2	1
8	Oncolytic H-1 parvovirus binds to sialic acid on laminins for cell attachment and entry. Nature Communications, 2021, 12, 3834.	12.8	15
9	Protocol for derivation of organoids and patient-derived orthotopic xenografts from glioma patient tumors. STAR Protocols, 2021, 2, 100534.	1.2	16
10	XAB2 promotes Ku eviction from single-ended DNA double-strand breaks independently of the ATM kinase. Nucleic Acids Research, 2021, 49, 9906-9925.	14.5	8
11	Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology. Acta Neuropathologica, 2020, 140, 919-949.	7.7	72
12	Temozolomide-Induced RNA Interactome Uncovers Novel LncRNA Regulatory Loops in Glioblastoma. Cancers, 2020, 12, 2583.	3.7	6
13	Glioblastoma Organoids: Pre-Clinical Applications and Challenges in the Context of Immunotherapy. Frontiers in Oncology, 2020, 10, 604121.	2.8	55
14	AN1-type zinc finger protein 3 (ZFAND3) is a transcriptional regulator that drives Glioblastoma invasion. Nature Communications, 2020, 11, 6366.	12.8	24
15	Is there a prominent role for MR spectroscopy in the clinical management of brain tumors?. Neuro-Oncology, 2020, 22, 903-904.	1.2	2
16	Fisetin protects against cardiac cell death through reduction of ROS production and caspases activity. Scientific Reports, 2020, 10, 2896.	3.3	37
17	Dual blockade of STAT3 and EGFR: a key to unlock drug resistance in glioblastoma?. Neuro-Oncology, 2020, 22, 440-441.	1.2	3
18	Gender issues from the perspective of health-care professionals in Neuro-oncology: an EANO and EORTC Brain Tumor Group survey. Neuro-Oncology Practice, 2020, 7, 249-259.	1.6	1

#	Article	IF	Citations
19	Revealing and Harnessing Tumour-Associated Microglia/Macrophage Heterogeneity in Glioblastoma. International Journal of Molecular Sciences, 2020, 21, 689.	4.1	46
20	Highlights of the inaugural ten – the launch of Neuro-Oncology Advances. Neuro-Oncology Advances, 2019, 1, vdz016.	0.7	0
21	The soluble form of pan-RTK inhibitor and tumor suppressor LRIG1 mediates downregulation of AXL through direct protein–protein interaction in glioblastoma. Neuro-Oncology Advances, 2019, 1, vdz024.	0.7	2
22	A DNA Repair and Cell-Cycle Gene Expression Signature in Primary and Recurrent Glioblastoma: Prognostic Value and Clinical Implications. Cancer Research, 2019, 79, 1226-1238.	0.9	26
23	The Distinct Roles of CXCR3 Variants and Their Ligands in the Tumor Microenvironment. Cells, 2019, 8, 613.	4.1	60
24	Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nature Communications, 2019, 10, 1787.	12.8	379
25	Mutant IDH1 Differently Affects Redox State and Metabolism in Glial Cells of Normal and Tumor Origin. Cancers, 2019, 11, 2028.	3.7	23
26	Longitudinal molecular trajectories of diffuse glioma in adults. Nature, 2019, 576, 112-120.	27.8	320
27	RNAi/CRISPR Screens: from a Pool to a Valid Hit. Trends in Biotechnology, 2019, 37, 38-55.	9.3	90
28	Transcriptional and epigenetic mechanisms underlying astrocyte identity. Progress in Neurobiology, 2019, 174, 36-52.	5.7	26
29	Irradiation to Improve the Response to Immunotherapeutic Agents in Glioblastomas. Advances in Radiation Oncology, 2019, 4, 268-282.	1.2	13
30	Distribution and prognostic impact of microglia/macrophage subpopulations in gliomas. Brain Pathology, 2019, 29, 513-529.	4.1	99
31	Increased formate overflow is a hallmark of oxidative cancer. Nature Communications, 2018, 9, 1368.	12.8	90
32	Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium. Neuro-Oncology, 2018, 20, 873-884.	1.2	119
33	Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia. Blood, 2018, 131, 1617-1621.	1.4	101
34	Lack of functional normalisation of tumour vessels following anti-angiogenic therapy in glioblastoma. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1741-1753.	4.3	15
35	Singleâ€cell transcriptomics reveals distinct inflammationâ€induced microglia signatures. EMBO Reports, 2018, 19, .	4.5	186
36	EGFL7 enhances surface expression of integrin \hat{l}_{\pm} ₅ \hat{l}_{\pm} ₁ to promote angiogenesis in malignant brain tumors. EMBO Molecular Medicine, 2018, 10, .	6.9	33

#	Article	IF	CITATIONS
37	Revival of the VEGF ligand family?. Neuro-Oncology, 2018, 20, 1421-1422.	1.2	3
38	Hub genes in a pan-cancer co-expression network show potential for predicting drug responses. F1000Research, 2018, 7, 1906.	1.6	4
39	Pericytes/vessel-associated mural cells (VAMCs) are the major source of key epithelial-mesenchymal transition (EMT) factors SLUG and TWIST in human glioma. Oncotarget, 2018, 9, 24041-24053.	1.8	8
40	Hub genes in a pan-cancer co-expression network show potential for predicting drug responses. F1000Research, 2018, 7, 1906.	1.6	3
41	The angiogenic switch leads to a metabolic shift in human glioblastoma. Neuro-Oncology, 2017, 19, now175.	1.2	50
42	Harnessing LRIG1-mediated inhibition of receptor tyrosine kinases for cancer therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 109-116.	7.4	13
43	Aptamer Functionalization of Nanosystems for Glioblastoma Targeting through the Blood–Brain Barrier. Journal of Medicinal Chemistry, 2017, 60, 4510-4516.	6.4	100
44	Altered metabolic landscape in <scp>IDH</scp> â€mutant gliomasÂaffects phospholipid, energy, and oxidative stress pathways. EMBO Molecular Medicine, 2017, 9, 1681-1695.	6.9	111
45	Carboxypeptidase E transmits its anti-migratory function in glioma cells via transcriptional regulation of cell architecture and motility regulating factors. International Journal of Oncology, 2017, 51, 702-714.	3.3	11
46	Regulation of hypoxia-induced autophagy in glioblastoma involves ATG9A. British Journal of Cancer, 2017, 117, 813-825.	6.4	89
47	Molecular crosstalk between tumour and brain parenchyma instructs histopathological features in glioblastoma. Oncotarget, 2016, 7, 31955-31971.	1.8	69
48	Analysis of the dynamic co-expression network of heart regeneration in the zebrafish. Scientific Reports, 2016, 6, 26822.	3.3	32
49	EGFRvIII mutations can emerge as late and heterogenous events in glioblastoma development and promote angiogenesis through Src activation. Neuro-Oncology, 2016, 18, 1644-1655.	1.2	78
50	DNA repair mechanisms and their clinical impact in glioblastoma. Mutation Research - Reviews in Mutation Research, 2016, 769, 19-35.	5.5	128
51	Targeted Proteomics to Assess the Response to Anti-Angiogenic Treatment in Human Glioblastoma (GBM). Molecular and Cellular Proteomics, 2016, 15, 481-492.	3.8	41
52	Combined VEGFR and CTLA-4 blockade increases the antigen-presenting function of intratumoral DCs and reduces the suppressive capacity of intratumoral MDSCs. American Journal of Cancer Research, 2016, 6, 2514-2531.	1.4	35
53	METB-09IDENTIFYING NOVEL VULNERABILITIES IN OXIDATIVE STRESS PATHWAYS IN IDH1 MUTANT GLIOMA. Neuro-Oncology, 2015, 17, v137.1-v137.	1.2	0
54	ATPS-59IMPROVING EFFICACY OF BEVACIZUMAB TREATMENT IN GLIOBLASTOMA BY TARGETING HIF1 ALPHA. Neuro-Oncology, 2015, 17, v31.2-v31.	1.2	0

#	Article	IF	CITATIONS
55	Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 2015, 518, 495-501.	27.8	2,132
56	Therapeutic control and resistance of the EGFR-driven signaling network in glioblastoma. Cell Communication and Signaling, 2015, 13, 23.	6.5	39
57	Gauging heterogeneity in primary versus recurrent glioblastoma. Neuro-Oncology, 2015, 17, 907-909.	1.2	3
58	Intercellular transfer of transferrin receptor by a contactâ€, Rab8â€dependent mechanism involving tunneling nanotubes. FASEB Journal, 2015, 29, 4695-4712.	0.5	46
59	Axitinib increases the infiltration of immune cells and reduces the suppressive capacity of monocytic MDSCs in an intracranial mouse melanoma model. Oncolmmunology, 2015, 4, e998107.	4.6	65
60	Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nature Cell Biology, 2015, 17, 1556-1568.	10.3	423
61	Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta Neuropathologica, 2015, 129, 115-131.	7.7	122
62	Comprehensive Analysis of Glycolytic Enzymes as Therapeutic Targets in the Treatment of Glioblastoma. PLoS ONE, 2015, 10, e0123544.	2.5	101
63	PeptideManager: a peptide selection tool for targeted proteomic studies involving mixed samples from different species. Frontiers in Genetics, 2014, 5, 305.	2.3	18
64	Databases for IncRNAs: a comparative evaluation of emerging tools. Rna, 2014, 20, 1655-1665.	3.5	81
65	Colorectal cancer derived organotypic spheroids maintain essential tissue characteristics but adapt their metabolism in culture. Proteome Science, 2014, 12, 39.	1.7	40
66	Drug and cell encapsulation: Alternative delivery options for the treatment of malignant brain tumors. Advanced Drug Delivery Reviews, 2014, 67-68, 142-153.	13.7	100
67	Bevacizumab treatment for human glioblastoma. Can it induce cognitive impairment?. Neuro-Oncology, 2014, 16, 754-756.	1.2	23
68	Glutamate as chemotactic fuel for diffuse glioma cells: Are they glutamate suckers?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 66-74.	7.4	39
69	Glioblastomas are composed of genetically divergent clones with distinct tumourigenic potential and variable stem cell-associated phenotypes. Acta Neuropathologica, 2014, 127, 203-219.	7.7	97
70	Multimodal imaging of gliomas in the context of evolving cellular and molecular therapies. Advanced Drug Delivery Reviews, 2014, 76, 98-115.	13.7	48
71	Uâ€251 revisited: genetic drift and phenotypic consequences of longâ€term cultures of glioblastoma cells. Cancer Medicine, 2014, 3, 812-824.	2.8	127
72	Factors influencing the mechanical stability of alginate beads applicable for immunoisolation of mammalian cells. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37, 196-208.	3.1	77

#	Article	IF	Citations
73	A novel multilayer immunoisolating encapsulation system overcoming protrusion of cells. Scientific Reports, 2014, 4, 6856.	3.3	50
74	Increased mitochondrial activity in a novel IDH1-R132H mutant human oligodendroglioma xenograft model: in situ detection of 2-HG and \hat{l}_{\pm} -KG. Acta Neuropathologica Communications, 2013, 1, 18.	5.2	54
75	Combined Effect of Tissue Stabilization and Protein Extraction Methods on Phosphoprotein Analysis. Biopreservation and Biobanking, 2013, 11, 161-165.	1.0	3
76	In vivo animal models for studying brain metastasis: value and limitations. Clinical and Experimental Metastasis, 2013, 30, 695-710.	3.3	70
77	EGFR wild-type amplification and activation promote invasion and development of glioblastoma independent of angiogenesis. Acta Neuropathologica, 2013, 125, 683-698.	7.7	127
78	Side population in human glioblastoma is non-tumorigenic and characterizes brain endothelial cells. Brain, 2013, 136, 1462-1475.	7.6	79
79	The soluble form of the tumor suppressor Lrig1 potently inhibits in vivo glioma growth irrespective of EGF receptor status. Neuro-Oncology, 2013, 15, 1200-1211.	1.2	58
80	Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17450-17455.	7.1	263
81	A Novel, Diffusely Infiltrative Xenograft Model of Human Anaplastic Oligodendroglioma with Mutations in FUBP1, CIC, and IDH1. PLoS ONE, 2013, 8, e59773.	2.5	39
82	Tumor versus Stromal Cells in Cultureâ€"Survival of the Fittest?. PLoS ONE, 2013, 8, e81183.	2.5	5
83	Gene Set Based Integrated Data Analysis Reveals Phenotypic Differences in a Brain Cancer Model. PLoS ONE, 2013, 8, e68288.	2.5	3
84	Animal Models for Low-Grade Gliomas. , 2013, , 165-175.		0
85	Analysis of the Growth Dynamics of Angiogenesis-Dependent and -Independent Experimental Glioblastomas by Multimodal Small-Animal PET and MRI. Journal of Nuclear Medicine, 2012, 53, 1135-1145.	5.0	38
86	In vivo models of primary brain tumors: pitfalls and perspectives. Neuro-Oncology, 2012, 14, 979-993.	1.2	211
87	Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3749-3754.	7.1	552
88	Critical Appraisal of the Side Population Assay in Stem Cell and Cancer Stem Cell Research. Cell Stem Cell, 2011, 8, 136-147.	11.1	287
89	Novel ways to target brain tumour metabolism. Expert Opinion on Therapeutic Targets, 2011, 15, 1227-1239.	3.4	13
90	Cellular toxicity following application of adeno-associated viral vector-mediated RNA interference in the nervous system. BMC Neuroscience, 2010, 11, 20.	1.9	73

#	Article	IF	Citations
91	Glioma proteomics: Status and perspectives. Journal of Proteomics, 2010, 73, 1823-1838.	2.4	68
92	Ciliary Neurotrophic Factor Cell-Based Delivery Prevents Synaptic Impairment and Improves Memory in Mouse Models of Alzheimer's Disease. Journal of Neuroscience, 2010, 30, 7516-7527.	3.6	114
93	αB-Crystallin Is Elevated in Highly Infiltrative Apoptosis-Resistant Glioblastoma Cells. American Journal of Pathology, 2010, 177, 1618-1628.	3.8	47
94	Proteomics strategies for target identification and biomarker discovery in cancer. Frontiers in Bioscience - Landmark, 2009, Volume, 3292.	3.0	51
95	iTRAQ-based Proteomics Profiling Reveals Increased Metabolic Activity and Cellular Cross-talk in Angiogenic Compared with Invasive Glioblastoma Phenotype. Molecular and Cellular Proteomics, 2009, 8, 2595-2612.	3.8	65
96	Cancer stem cells and angiogenesis. Seminars in Cancer Biology, 2009, 19, 279-284.	9.6	44
97	Anti-VEGF therapies for malignant glioma: treatment effects and escape mechanisms. Expert Opinion on Therapeutic Targets, 2009, 13, 455-468.	3.4	75
98	A novel eGFPâ€expressing immunodeficient mouse model to study tumorâ€host interactions. FASEB Journal, 2008, 22, 3120-3128.	0.5	57
99	Formation of Composite Endothelial Cell–Mesenchymal Stem Cell Islets. Diabetes, 2008, 57, 2393-2401.	0.6	139
100	The expression of the chemorepellent Semaphorin 3A is selectively induced in terminal Schwann cells of a subset of neuromuscular synapses that display limited anatomical plasticity and enhanced vulnerability in motor neuron disease. Molecular and Cellular Neurosciences, 2006, 32, 102-117.	2.2	154
101	Cell therapies for glioblastoma. Expert Opinion on Biological Therapy, 2006, 6, 739-749.	3.1	26
102	A Novel Role for Sema3A in Neuroprotection from Injury Mediated by Activated Microglia. Journal of Neuroscience, 2006, 26, 1730-1738.	3.6	79
103	Chemorepellent Axon Guidance Molecules in Spinal Cord Injury. Journal of Neurotrauma, 2006, 23, 409-421.	3.4	68
104	Lentiviral-mediated transfer of CNTF to schwann cells within reconstructed peripheral nerve grafts enhances adult retinal ganglion cell survival and axonal regeneration. Molecular Therapy, 2005, 11, 906-915.	8.2	112
105	Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors. BMC Neuroscience, 2004, 5, 4.	1.9	91
106	Prothrombin overexpressed in postâ€natal neurones requires blood factors for activation in the mouse brain. Journal of Neurochemistry, 2004, 88, 1380-1388.	3.9	14
107	The astrocyte/meningeal cell interface is a barrier to neurite outgrowth which can be overcome by manipulation of inhibitory molecules or axonal signalling pathways. Molecular and Cellular Neurosciences, 2003, 24, 913-925.	2.2	102
108	Meningeal cell-derived semaphorin 3A inhibits neurite outgrowth. Molecular and Cellular Neurosciences, 2003, 24, 902-912.	2.2	96

#	ARTICLE	IF	CITATIONS
109	Viral vector-mediated gene expression in olfactory ensheathing glia implants in the lesioned rat spinal cord. Gene Therapy, 2002, 9, 135-146.	4.5	111
110	Intravitreal Injection of Adeno-associated Viral Vectors Results in the Transduction of Different Types of Retinal Neurons in Neonatal and Adult Rats: A Comparison with Lentiviral Vectors. Molecular and Cellular Neurosciences, 2002, 21, 141-157.	2.2	104
111	Slit2 Is a Repellent for Retinal Ganglion Cell Axons. Journal of Neuroscience, 2000, 20, 4962-4974.	3. 6	152
112	Changes in the expression of protease-activated receptor 1 and protease nexin-1 mRNA during rat nervous system development and after nerve lesion. European Journal of Neuroscience, 1998, 10, 1590-1607.	2.6	111
113	The serine protease granzyme A does not induce platelet aggregation but inhibits responses triggered by thrombin. Biochemical Journal, 1996, 315, 939-945.	3.7	39
114	The Thrombin Receptor Is Present in Myoblasts and Its Expression Is Repressed upon Fusion. Journal of Biological Chemistry, 1996, 271, 29162-29169.	3.4	34
115	The Thrombin Receptor in the Nervous System. Seminars in Thrombosis and Hemostasis, 1996, 22, 125-133.	2.7	33
116	Enzymatic Activity of Glycosyltransferase Glt8d1 Promotes Human Glioblastoma Cells Migration. SSRN Electronic Journal, 0, , .	0.4	0
117	Stem Cell-Associated Heterogeneity in Glioblastoma Is a Result of Intrinsic Tumor Plasticity Shaped by the Microenvironment. SSRN Electronic Journal, 0, , .	0.4	0