
Christopher German

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4032143/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry, 2002, 17, 1567-1574.	3.0	1,087
2	Deep, diverse and definitely different: unique attributes of the world's largest ecosystem. Biogeosciences, 2010, 7, 2851-2899.	3.3	619
3	Evolution and Biogeography of Deep-Sea Vent and Seep Invertebrates. Science, 2002, 295, 1253-1257.	12.6	526
4	Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature, 2015, 523, 200-203.	27.8	397
5	Pathways for abiotic organic synthesis at submarine hydrothermal fields. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7668-7672.	7.1	266
6	First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology, 2012, 40, 47-50.	4.4	236
7	The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes. Earth and Planetary Science Letters, 2008, 270, 157-167.	4.4	211
8	The NASA Roadmap to Ocean Worlds. Astrobiology, 2019, 19, 1-27.	3.0	209
9	Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean. Nature, 2003, 421, 252-256.	27.8	206
10	lron persistence in a distal hydrothermal plume supported by dissolved–particulate exchange. Nature Geoscience, 2017, 10, 195-201.	12.9	204
11	Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume. Nature Geoscience, 2009, 2, 197-201.	12.9	200
12	An authoritative global database for active submarine hydrothermal vent fields. Geochemistry, Geophysics, Geosystems, 2013, 14, 4892-4905.	2.5	181
13	Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre. Nature Communications, 2012, 3, 620.	12.8	162
14	Hydrothermal activity along the southwest Indian ridge. Nature, 1998, 395, 490-493.	27.8	146
15	Where are the undiscovered hydrothermal vents on oceanic spreading ridges?. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 121, 202-212.	1.4	141
16	Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14020-14025.	7.1	140
17	Hydrothermal exploration with the Autonomous Benthic Explorer. Deep-Sea Research Part I: Oceanographic Research Papers, 2008, 55, 203-219.	1.4	132
18	Hydrothermal exploration of mid-ocean ridges: Where might the largest sulfide deposits be forming?. Chemical Geology, 2016, 420, 114-126.	3.3	117

CHRISTOPHER GERMAN

#	Article	IF	CITATIONS
19	Deep-Water Chemosynthetic Ecosystem Research during the Census of Marine Life Decade and Beyond: A Proposed Deep-Ocean Road Map. PLoS ONE, 2011, 6, e23259.	2.5	105
20	The relationship between P/Fe and V/Fe ratios in hydrothermal precipitates and dissolved phosphate in seawater. Geophysical Research Letters, 1998, 25, 2253-2256.	4.0	103
21	Hydrothermal Plumes Over Spreading-Center Axes: Global Distributions and Geological Inferences. Geophysical Monograph Series, 0, , 47-71.	0.1	101
22	On the Global Distribution of Hydrothermal Vent Fields. Geophysical Monograph Series, 0, , 245-266.	0.1	97
23	Subseafloor microbial communities in hydrogenâ€rich vent fluids from hydrothermal systems along the <scp>M</scp> idâ€ <scp>C</scp> ayman <scp>R</scp> ise. Environmental Microbiology, 2016, 18, 1970-1987.	3.8	88
24	Vailulu'u Seamount, Samoa: Life and death on an active submarine volcano. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6448-6453.	7.1	81
25	The Rainbow Hydrothermal Plume, 36°15′N, MAR. Geophysical Research Letters, 1996, 23, 2979-2982.	4.0	70
26	Influence of ice thickness and surface properties on light transmission through <scp>A</scp> rctic sea ice. Journal of Geophysical Research: Oceans, 2015, 120, 5932-5944.	2.6	70
27	Flow and Mixing in the Rift Valley of the Mid-Atlantic Ridge. Journal of Physical Oceanography, 2002, 32, 1763-1778.	1.7	67
28	Time series studies of vent fluids from the TAG and MARK sites (1986, 1990) Mid-Atlantic Ridge: a new solution chemistry model and a mechanism for Cu/Zn zonation in massive sulphide orebodies. Geological Society Special Publication, 1995, 87, 77-86.	1.3	65
29	Dissolved and particulate organic carbon in hydrothermal plumes from the East Pacific Rise, 9°50′N. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 922-931.	1.4	65
30	Understanding the biogeography of chemosynthetic ecosystems. Oceanologica Acta: European Journal of Oceanology - Revue Europeene De Oceanologie, 2002, 25, 227-241.	0.7	64
31	Continuation of the hydrothermal fluid chemistry time series at TAG, and the effects of ODP drilling. Geophysical Research Letters, 1996, 23, 3487-3489.	4.0	63
32	Geochemistry of fluids from Earth's deepest ridge-crest hot-springs: Piccard hydrothermal field, Mid-Cayman Rise. Geochimica Et Cosmochimica Acta, 2018, 228, 95-118.	3.9	63
33	Composition of hydrothermal fluids and mineralogy of associated chimney material on the East Scotia Ridge back-arc spreading centre. Geochimica Et Cosmochimica Acta, 2014, 139, 47-71.	3.9	61
34	Hydrothermal impacts on trace element and isotope ocean biogeochemistry. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160035.	3.4	59
35	Geotectonic setting of hydrothermal activity on the summit of Lucky Strike Seamount (37°17′N,) Tj ETQq1	1 0,78431 2.5	4 rgBT /Over
36	Timeâ€series analysis of two hydrothermal plumes at 9°50′N East Pacific Rise reveals distinct,	2.4	54

heterogeneous bacterial populations. Geobiology, 2012, 10, 178-192.

#	Article	IF	CITATIONS
37	Reply to Boehm and Carragher: Multiple lines of evidence link deep-water coral damage to <i>Deepwater Horizon</i> oil spill. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, .	7.1	52
38	A reduced crustal magnetization zone near the first observed active hydrothermal vent field on the Southwest Indian Ridge. Geophysical Research Letters, 2010, 37, .	4.0	47
39	Global Ocean Sediment Composition and Burial Flux in the Deep Sea. Global Biogeochemical Cycles, 2021, 35, e2020GB006769.	4.9	46
40	A decade to study deep-sea life. Nature Ecology and Evolution, 2021, 5, 265-267.	7.8	43
41	Science Goals and Mission Architecture of the Europa Lander Mission Concept. Planetary Science Journal, 2022, 3, 22.	3.6	42
42	Hydrothermal exploration of the Fonualei Rift and Spreading Center and the Northeast Lau Spreading Center. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	41
43	The Science Case for a Return to Enceladus. Planetary Science Journal, 2021, 2, 132.	3.6	40
44	Water mass analysis of the 2013 US GEOTRACES eastern Pacific zonal transect (GP16). Marine Chemistry, 2018, 201, 6-19.	2.3	38
45	Sustained volcanically-hosted venting at ultraslow ridges: Piccard Hydrothermal Field, Mid-Cayman Rise. Earth and Planetary Science Letters, 2013, 380, 162-168.	4.4	36
46	Scientific Challenges and Present Capabilities in Underwater Robotic Vehicle Design and Navigation for Oceanographic Exploration Under-Ice. Remote Sensing, 2020, 12, 2588.	4.0	30
47	The Thermal Structure of the Oceanic Crust, Ridge-Spreading and Hydrothermal Circulation: How Well do we Understand their Inter-Connections?. Geophysical Monograph Series, 2013, , 1-18.	0.1	29
48	Trophic regions of a hydrothermal plume dispersing away from an ultramaficâ€hosted ventâ€system: Von Damm ventâ€site, Midâ€Cayman Rise. Geochemistry, Geophysics, Geosystems, 2013, 14, 317-327.	2.5	29
49	Hydrothermal activity on the eastern SWIR (50°-70°E): Evidence from core-top geochemistry, 1887 and 1998. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	27
50	Hydrothermal activity on the ultraâ€slow spreading southern Knipovich Ridge. Geochemistry, Geophysics, Geosystems, 2007, 8, .	2.5	27
51	Optimization of an inductively coupled plasma-optical emission spectrometry method for the rapid determination of high-precision Mg/Ca and Sr/Ca in foraminiferal calcite. Geochemistry, Geophysics, Geosystems, 2003, 4, n/a-n/a.	2.5	25
52	Temporal variability of the hydrothermal plume above the Kairei vent field, 25°S, Central Indian Ridge. Geochemistry, Geophysics, Geosystems, 2002, 3, XXX-XXX.	2.5	23
53	Exploring ocean worlds on Earth and beyond. Nature Geoscience, 2018, 11, 2-4.	12.9	23
54	Abiotic redox reactions in hydrothermal mixing zones: Decreased energy availability for the subsurface biosphere. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20453-20461.	7.1	22

CHRISTOPHER GERMAN

#	Article	IF	CITATIONS
55	Deciphering the Complex Chemistry of Deep-Ocean Particles Using Complementary Synchrotron X-ray Microscope and Microprobe Instruments. Accounts of Chemical Research, 2016, 49, 128-137.	15.6	21
56	Protistan grazing impacts microbial communities and carbon cycling at deep-sea hydrothermal vents. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
57	Science Objectives for Flagship-Class Mission Concepts for the Search for Evidence of Life at Enceladus. Astrobiology, 2022, 22, 685-712.	3.0	21
58	Increased input of circumpolar deep water-borne detritus to the glacial SE Atlantic Ocean. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	19
59	The design and 200 day per year operation of the Autonomous Underwater Vehicle Sentry. , 2016, , .		18
60	Distribution and behavior of dissolved hydrogen sulfide in hydrothermal plumes. Limnology and Oceanography, 2001, 46, 461-464.	3.1	17
61	Rapid dispersal of a hydrothermal plume by turbulent mixing. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57, 931-945.	1.4	17
62	Distribution of iron in the Western Indian Ocean and the Eastern tropical South pacific: An inter-basin comparison. Chemical Geology, 2020, 532, 119334.	3.3	17
63	The geochemistry of Atlantic hydrothermal particles. Geophysical Research Letters, 1996, 23, 3503-3506.	4.0	16
64	The U.S.GEOTRACES Eastern Tropical Pacific Transect (GP16). Marine Chemistry, 2018, 201, 1-5.	2.3	16
65	Particle dynamics in the rising plume at <scp>P</scp> iccard <scp>H</scp> ydrothermal <scp>F</scp> ield, <scp>M</scp> idâ€ <scp>C</scp> ayman <scp>R</scp> ise. Geochemistry, Geophysics, Geosystems, 2015, 16, 2762-2774.	2.5	13
66	Hydrothermal sediments as a potential record of seawater Nd isotope compositions: The Rainbow vent site (36°14′N, Mid-Atlantic Ridge). Paleoceanography, 2006, 21, .	3.0	11
67	Hydrothermal trace metal release and microbial metabolism in the northeastern Lau Basin of the South Pacific Ocean. Biogeosciences, 2021, 18, 5397-5422.	3.3	11
68	Global environmental effects of large volcanic eruptions on ocean chemistry: Evidence from "hydrothermal―sediments (ODP Leg 185, Site 1149B). Journal of Geophysical Research, 2008, 113, .	3.3	9
69	The relationships between volcanism, tectonism, and hydrothermal activity on the Southern Equatorial Mid-Atlantic Ridge. Geophysical Monograph Series, 2010, , 133-152.	0.1	9
70	Dynamic Biogeochemistry of the Particulate Sulfur Pool in a Buoyant Deep-Sea Hydrothermal Plume. ACS Earth and Space Chemistry, 2020, 4, 168-182.	2.7	9
71	Diagnostic Morphology and Solid-State Chemical Speciation of Hydrothermally Derived Particulate Fe in a Long-Range Dispersing Plume. ACS Earth and Space Chemistry, 2020, 4, 1831-1842.	2.7	7
72	Hydrothermal exploration and astrobiology: oases for life in distant oceans?. International Journal of Astrobiology, 2004, 3, 81-95.	1.6	6

CHRISTOPHER GERMAN

#	Article	IF	CITATIONS
73	Lightly tethered unmanned underwater vehicle for under-ice exploration. , 2012, , .		5
74	Forward geochemical modeling as a guiding tool during exploration of Sea Cliff hydrothermal field, Gorda Ridge. Planetary and Space Science, 2021, 197, 105151.	1.7	5
75	Abundance of low-temperature axial venting at the equatorial East Pacific Rise. Deep-Sea Research Part I: Oceanographic Research Papers, 2021, 167, 103426.	1.4	5
76	A multi-modal approach to measuring particulate iron speciation in buoyant hydrothermal plumes. Chemical Geology, 2021, 560, 120018.	3.3	4
77	Hydrothermal Plume Detection in the Deep Ocean—A Combination of Technologies. Underwater Technology, 1998, 23, 71-75.	0.3	3
78	Demonstration of Autonomous Nested Search for Local Maxima Using an Unmanned Underwater Vehicle. , 2020, , .		2
79	Hydrothermal plume detection dataset from Chinese cruises to the equatorial East Pacific Rise. Data in Brief, 2020, 33, 106540.	1.0	1
80	Hydrothermal Exploration of the Southern Chile Rise: Sedimentâ€Hosted Venting at the Chile Triple Junction. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	0