Tristan A RodrÃ-guez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4031270/publications.pdf

Version: 2024-02-01

51 papers 3,650 citations

201674 27 h-index 214800 47 g-index

59 all docs 59 docs citations

59 times ranked 4703 citing authors

#	Article	IF	CITATIONS
1	Mitofusins $\langle i \rangle$ Mfn1 $\langle i \rangle$ and $\langle i \rangle$ Mfn2 $\langle i \rangle$ Are Required to Preserve Glucose- but Not Incretin-Stimulated \hat{I}^2 -Cell Connectivity and Insulin Secretion. Diabetes, 2022, 71, 1472-1489.	0.6	14
2	DRP1 levels determine the apoptotic threshold during embryonic differentiation through a mitophagy-dependent mechanism. Developmental Cell, 2022, 57, 1316-1330.e7.	7.0	15
3	Cell competition and the regulative nature of early mammalian development. Cell Stem Cell, 2022, 29, 1018-1030.	11.1	11
4	Cell Competition: A Choreographed Dance of Death. Current Biology, 2021, 31, R255-R257.	3.9	0
5	Mutant p53 in cell-cell interactions. Genes and Development, 2021, 35, 433-448.	5.9	26
6	Cell competition acts as a purifying selection to eliminate cells with mitochondrial defects during early mouse development. Nature Metabolism, 2021, 3, 1091-1108.	11.9	33
7	Genetically variant human pluripotent stem cells selectively eliminate wild-type counterparts through YAP-mediated cell competition. Developmental Cell, 2021, 56, 2455-2470.e10.	7.0	40
8	DB special issue - Cell Competition in Development and Disease. Developmental Biology, 2021, 479, 123-125.	2.0	0
9	MHC-I presents: tumor surveillance in the epithelia by cell competition. Nature Immunology, 2021, 22, 1358-1360.	14.5	2
10	Transcriptional versus metabolic control of cell fitness during cell competition. Seminars in Cancer Biology, 2020, 63, 36-43.	9.6	16
11	Evolution of an Amniote-Specific Mechanism for Modulating Ubiquitin Signaling via Phosphoregulation of the E2 Enzyme UBE2D3. Molecular Biology and Evolution, 2020, 37, 1986-2001.	8.9	2
12	Cell competition: the winners and losers of fitness selection. Development (Cambridge), 2019, 146, .	2.5	116
13	Genetic Deletion of Hesx1 Promotes Exit from the Pluripotent State and Impairs Developmental Diapause. Stem Cell Reports, 2019, 13, 970-979.	4.8	9
14	P53 and mTOR signalling determine fitness selection through cell competition during early mouse embryonic development. Nature Communications, 2018, 9, 1763.	12.8	91
15	The Mitochondria and the Regulation of Cell Fitness During Early Mammalian Development. Current Topics in Developmental Biology, 2018, 128, 339-363.	2.2	32
16	A Tale of Division and Polarization in the Mammalian Embryo. Developmental Cell, 2017, 40, 215-216.	7.0	0
17	Cell Competition and Its Role in the Regulation of Cell Fitness from Development to Cancer. Developmental Cell, 2016, 38, 621-634.	7.0	150
18	Cancer: The Transforming Power of Cell Competition. Current Biology, 2016, 26, R164-R166.	3.9	12

#	Article	IF	CITATIONS
19	Activin A directs striatal projection neuron differentiation of human pluripotent stem cells. Development (Cambridge), 2015, 142, 1375-1386.	2.5	134
20	Selecting for fitness in mammalian development. Cell Cycle, 2014, 13, 9-10.	2.6	6
21	MicroRNAs control the apoptotic threshold in primed pluripotent stem cells through regulation of BIM. Genes and Development, 2014, 28, 1873-1878.	5.9	47
22	HOIP Deficiency Causes Embryonic Lethality by Aberrant TNFR1-Mediated Endothelial Cell Death. Cell Reports, 2014, 9, 153-165.	6.4	217
23	Development: Hippo Signalling Turns the Embryo Inside Out. Current Biology, 2013, 23, R559-R561.	3.9	22
24	Competitive Interactions Eliminate Unfit Embryonic Stem Cells at the Onset of Differentiation. Developmental Cell, 2013, 26, 19-30.	7.0	199
25	Ready, set, differentiate!. ELife, 2013, 2, e01839.	6.0	1
26	Multi-Cellular Rosettes in the Mouse Visceral Endoderm Facilitate the Ordered Migration of Anterior Visceral Endoderm Cells. PLoS Biology, 2012, 10, e1001256.	5.6	105
27	Activin induces cortical interneuron identity and differentiation in embryonic stem cell-derived telencephalic neural precursors. Nature Communications, 2012, 3, 841.	12.8	68
28	BMP signaling induces visceral endoderm differentiation of XEN cells and parietal endoderm. Developmental Biology, 2012, 361, 90-102.	2.0	72
29	Crosstalk between Nodal/Activin and MAPK p38 Signaling Is Essential for Anterior-Posterior Axis Specification. Current Biology, 2011, 21, 1289-1295.	3.9	27
30	Coordination of cell proliferation and anterior-posterior axis establishment in the mouse embryo. Development (Cambridge), 2011, 138, 1521-1530.	2.5	44
31	MiRNA-mediated regulation of cell signaling and homeostasis in the early mouse embryo. Cell Cycle, 2011, 10, 584-591.	2.6	15
32	Nodal Dependent Differential Localisation of Dishevelled-2 Demarcates Regions of Differing Cell Behaviour in the Visceral Endoderm. PLoS Biology, 2011, 9, e1001019.	5.6	46
33	Correct Patterning of the Primitive Streak Requires the Anterior Visceral Endoderm. PLoS ONE, 2011, 6, e17620.	2.5	30
34	Differences in the epigenetic and reprogramming properties of pluripotent and extra-embryonic stem cells implicate chromatin remodelling as an important early event in the developing mouse embryo. Epigenetics and Chromatin, 2010, 3, 1.	3.9	30
35	An Early Developmental Role for miRNAs in the Maintenance of Extraembryonic Stem Cells in the Mouse Embryo. Developmental Cell, 2010, 19, 207-219.	7.0	80
36	Dicer regulates Xist promoter methylation in ES cells indirectly through transcriptional control of Dnmt3a. Epigenetics and Chromatin, 2008, 1, 2.	3.9	76

#	Article	IF	CITATIONS
37	BMP signalling inhibits premature neural differentiation in the mouse embryo. Development (Cambridge), 2007, 134, 3359-3369.	2.5	142
38	Early embryonic expression patterns of the mouse <i>Flamingo</i> and <i>Prickle</i> orthologues. Developmental Dynamics, 2007, 236, 3137-3143.	1.8	27
39	Induction and migration of the anterior visceral endoderm is regulated by the extra-embryonic ectoderm. Development (Cambridge), 2005, 132, 2513-2520.	2.5	131
40	<i>Cited1</i> Is Required in Trophoblasts for Placental Development and for Embryo Growth and Survival. Molecular and Cellular Biology, 2004, 24, 228-244.	2.3	80
41	Targeted deletion of the novel cytoplasmic dynein mD2LIC disrupts the embryonic organiser, formation of the body axes and specification of ventral cell fates. Development (Cambridge), 2004, 131, 4999-5007.	2.5	62
42	Active cell migration drives the unilateral movements of the anterior visceral endoderm. Development (Cambridge), 2004, 131, 1157-1164.	2.5	159
43	Folic acid prevents exencephaly in Cited2 deficient mice. Human Molecular Genetics, 2002, 11, 283-293.	2.9	145
44	Remembering Rosa Beddington? A tribute from her friends and colleagues. Developmental Dynamics, 2002, 223, 3-11.	1.8	0
45	Distinct Enhancer Elements Control Hex Expression during Gastrulation and Early Organogenesis. Developmental Biology, 2001, 234, 304-316.	2.0	91
46	Spermatogenic failure in male mice with four sex chromosomes. Chromosoma, 2001, 110, 124-129.	2.2	14
47	Nodal signalling in the epiblast patterns the early mouse embryo. Nature, 2001, 411, 965-969.	27.8	489
48	The Homeobox Gene Hesx1 Is Required in the Anterior Neural Ectoderm for Normal Forebrain Formation. Developmental Biology, 2000, 223, 422-430.	2.0	101
49	The meiotic checkpoint monitoring sypapsis eliminates spermatocytes via p53-independent apoptosis. Nature Genetics, 1998, 18, 257-261.	21.4	246
50	Msg1 and Mrg1, founding members of a gene family, show distinct patterns of gene expression during mouse embryogenesis. Mechanisms of Development, 1998, 72, 27-40.	1.7	155
51	Fertile XY*O male mice: evidence for a mutation which circumvents the â€~meiotic quality control'. Genetical Research, 1997, 70, 79-89.	0.9	0