
Yin Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4031140/publications.pdf Version: 2024-02-01

YIN FANC

#	Article	IF	CITATIONS
1	A Lowâ€Concentration Hydrothermal Synthesis of Biocompatible Ordered Mesoporous Carbon Nanospheres with Tunable and Uniform Size. Angewandte Chemie - International Edition, 2010, 49, 7987-7991.	13.8	608
2	Two-Dimensional Mesoporous Carbon Nanosheets and Their Derived Graphene Nanosheets: Synthesis and Efficient Lithium Ion Storage. Journal of the American Chemical Society, 2013, 135, 1524-1530.	13.7	591
3	Synthesis of 2Dâ€Mesoporousâ€Carbon/MoS ₂ Heterostructures with Wellâ€Defined Interfaces for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Materials, 2016, 28, 9385-9390.	21.0	253
4	Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers. Nature Communications, 2015, 6, 7416.	12.8	238
5	Rational design of silicon structures for optically controlled multiscale biointerfaces. Nature Biomedical Engineering, 2018, 2, 508-521.	22.5	183
6	Dualâ€Pore Mesoporous Carbon@Silica Composite Core–Shell Nanospheres for Multidrug Delivery. Angewandte Chemie - International Edition, 2014, 53, 5366-5370.	13.8	170
7	Core-shell Ag@SiO2@mSiO2 mesoporous nanocarriers for metal-enhanced fluorescence. Chemical Communications, 2011, 47, 11618.	4.1	164
8	Chromogenic Photonic Crystals Enabled by Novel Vaporâ€Responsive Shapeâ€Memory Polymers. Advanced Materials, 2015, 27, 3696-3704.	21.0	155
9	An Aqueous Emulsion Route to Synthesize Mesoporous Carbon Vesicles and Their Nanocomposites. Advanced Materials, 2010, 22, 833-837.	21.0	117
10	Interface Tension-Induced Synthesis of Monodispersed Mesoporous Carbon Hemispheres. Journal of the American Chemical Society, 2015, 137, 2808-2811.	13.7	113
11	Self-assembled self-cleaning broadband anti-reflection coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 439, 84-100.	4.7	92
12	Growth of Single-Crystal Mesoporous Carbons with <i>Im</i> 3Ì <i>m</i> Symmetry. Chemistry of Materials, 2010, 22, 4828-4833.	6.7	70
13	Direct Writing of Three-Dimensional Macroporous Photonic Crystals on Pressure-Responsive Shape Memory Polymers. ACS Applied Materials & Interfaces, 2015, 7, 23650-23659.	8.0	64
14	Oriented Mesoporous Nanopyramids as Versatile Plasmon-Enhanced Interfaces. Journal of the American Chemical Society, 2014, 136, 6822-6825.	13.7	62
15	Pressure-Enabled Synthesis of Hetero-Dimers and Hetero-Rods through Intraparticle Coalescence and Interparticle Fusion of Quantum-Dot-Au Satellite Nanocrystals. Journal of the American Chemical Society, 2017, 139, 8408-8411.	13.7	62
16	One‣tep Hydrothermal Synthesis of Carboxylâ€Functionalized Upconversion Phosphors for Bioapplications. Chemistry - A European Journal, 2012, 18, 13642-13650.	3.3	61
17	Reconfigurable Photonic Crystals Enabled by Multistimuli-Responsive Shape Memory Polymers Possessing Room Temperature Shape Processability. ACS Applied Materials & Interfaces, 2017, 9, 5457-5467.	8.0	59
18	Enhanced Electrochemical and Thermal Transport Properties of Graphene/MoS ₂ Heterostructures for Energy Storage: Insights from Multiscale Modeling. ACS Applied Materials & Interfaces, 2018, 10, 14614-14621.	8.0	56

Yin Fang

#	Article	IF	CITATIONS
19	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035.	38.1	54
20	Superhydrophobic hierarchical arrays fabricated by a scalable colloidal lithography approach. Journal of Colloid and Interface Science, 2017, 487, 484-492.	9.4	52
21	Scalable bottom-up fabrication of colloidal photonic crystals and periodic plasmonic nanostructures. Journal of Materials Chemistry C, 2013, 1, 6031.	5.5	50
22	Optically Bistable Macroporous Photonic Crystals Enabled by Thermoresponsive Shape Memory Polymers. Advanced Optical Materials, 2015, 3, 1509-1516.	7.3	48
23	Growth of Singleâ€Layered Twoâ€Dimensional Mesoporous Polymer/Carbon Films by Selfâ€Assembly of Monomicelles at the Interfaces of Various Substrates. Angewandte Chemie - International Edition, 2015, 54, 8425-8429.	13.8	45
24	Texturing Silicon Nanowires for Highly Localized Optical Modulation of Cellular Dynamics. Nano Letters, 2018, 18, 4487-4492.	9.1	45
25	Self-assembled biomimetic superhydrophobic hierarchical arrays. Journal of Colloid and Interface Science, 2013, 405, 51-57.	9.4	44
26	Dissecting Biological and Synthetic Soft–Hard Interfaces for Tissue-Like Systems. Chemical Reviews, 2022, 122, 5233-5276.	47.7	32
27	Dynamic and Programmable Cellular-Scale Granules Enable Tissue-like Materials. Matter, 2020, 2, 948-964.	10.0	30
28	Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces. Nature Nanotechnology, 2021, 16, 206-213.	31.5	30
29	Three-dimensional macroporous photonic crystal enhanced photon collection for quantum dot-based luminescent solar concentrator. Nano Energy, 2020, 67, 104217.	16.0	29
30	Outstanding surface plasmon resonance performance enabled by templated oxide gratings. Physical Chemistry Chemical Physics, 2016, 18, 26078-26087.	2.8	26
31	In-Situ Confined Growth of Monodisperse Pt Nanoparticle@Graphene Nanobox Composites as Electrocatalytic Nanoreactors. Small, 2015, 11, 1003-1010.	10.0	24
32	Controlling stem cell fate using cold atmospheric plasma. Stem Cell Research and Therapy, 2020, 11, 368.	5.5	23
33	Generalized Fabrication of Monolayer Nonclose-Packed Colloidal Crystals with Tunable Lattice Spacing. Langmuir, 2013, 29, 7674-7681.	3.5	21
34	Alloy-assisted deposition of three-dimensional arrays of atomic gold catalyst for crystal growth studies. Nature Communications, 2017, 8, 2014.	12.8	21
35	Soft–Hard Composites for Bioelectric Interfaces. Trends in Chemistry, 2020, 2, 519-534.	8.5	21
36	Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries. APL Materials, 2014, 2, 113302.	5.1	17

Yin Fang

#	Article	IF	CITATIONS
37	Unconventional Shape Memory Mechanisms of Nanoporous Polymer Photonic Crystals: Implications for Nano-Optical Coatings and Devices. ACS Applied Nano Materials, 2018, 1, 6081-6090.	5.0	16
38	Site‧pecific Carbon Deposition for Hierarchically Ordered Core/Shell‧tructured Graphitic Carbon with Remarkable Electrochemical Performance. ChemSusChem, 2013, 6, 1938-1944.	6.8	15
39	Fabricating vertically aligned sub-20 nm Si nanowire arrays by chemical etching and thermal oxidation. Nanotechnology, 2016, 27, 165303.	2.6	15
40	Structured silicon for revealing transient and integrated signal transductions in microbial systems. Science Advances, 2020, 6, eaay2760.	10.3	14
41	Controlling the Geometries of Si Nanowires through Tunable Nanosphere Lithography. ACS Applied Materials & Interfaces, 2017, 9, 7368-7375.	8.0	13
42	Levelling the playing field: screening for synergistic effects in coalesced bimetallic nanoparticles. Nanoscale, 2016, 8, 3447-3453.	5.6	11
43	Curving neural nanobioelectronics. Nature Nanotechnology, 2019, 14, 733-735.	31.5	10
44	Photonic Crystals: Optically Bistable Macroporous Photonic Crystals Enabled by Thermoresponsive Shape Memory Polymers (Advanced Optical Materials 11/2015). Advanced Optical Materials, 2015, 3, 1508-1508.	7.3	1