Claudio Soto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4029400/publications.pdf

Version: 2024-02-01

		18482	18647
145	15,193	62	119
papers	citations	h-index	g-index
153	153	153	12304

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	North American and Norwegian Chronic Wasting Disease Prions Exhibit Different Potential for Interspecies Transmission and Zoonotic Risk. Journal of Infectious Diseases, 2022, 225, 542-551.	4.0	20
2	The clock modulator Nobiletin mitigates astrogliosisâ€associated neuroinflammation and disease hallmarks in an Alzheimer's disease model. FASEB Journal, 2022, 36, e22186.	0.5	23
3	Al̂² oligomers trigger necroptosis-mediated neurodegeneration via microglia activation in Alzheimerâ $€$ ™s disease. Acta Neuropathologica Communications, 2022, 10, 31.	5.2	28
4	Preventive and therapeutic reduction of amyloid deposition and behavioral impairments in a model of Alzheimer's disease by whole blood exchange. Molecular Psychiatry, 2022, 27, 4285-4296.	7.9	11
5	Mitochondrial transplant to replenish damaged mitochondria: A novel therapeutic strategy for neurodegenerative diseases?. Progress in Molecular Biology and Translational Science, 2021, 177, 49-63.	1.7	5
6	Identification of biomarkers for diagnosing and monitoring therapy in the treatment of neurologic disorders., 2021,, 291-310.		0
7	Amyloid pathology arrangements in Alzheimer's disease brains modulate in vivo seeding capability. Acta Neuropathologica Communications, 2021, 9, 56.	5.2	15
8	Human Endogenous Retroviruses in Glioblastoma Multiforme. Microorganisms, 2021, 9, 764.	3.6	11
9	Generation of a humanized Aβ expressing mouse demonstrating aspects of Alzheimer's disease-like pathology. Nature Communications, 2021, 12, 2421.	12.8	53
10	Alphaâ€Synuclein Oligomers and Neurofilament Light Chain Predict Phenoconversion of Pure Autonomic Failure. Annals of Neurology, 2021, 89, 1212-1220.	5.3	51
11	Multiple system atrophy-associated oligodendroglial protein p25 $\hat{l}\pm$ stimulates formation of novel $\hat{l}\pm$ -synuclein strain with enhanced neurodegenerative potential. Acta Neuropathologica, 2021, 142, 87-115.	7.7	55
12	Transmission of cerebral amyloid pathology by peripheral administration of misfolded ${\rm A\hat{l}^2}$ aggregates. Molecular Psychiatry, 2021, 26, 5690-5701.	7.9	18
13	Induced Pluripotent Stem Cell-Derived Neural Precursors Improve Memory, Synaptic and Pathological Abnormalities in a Mouse Model of Alzheimer's Disease. Cells, 2021, 10, 1802.	4.1	17
14	Seed Amplification Assay to Diagnose Early Parkinson's and Predict Dopaminergic Deficit Progression. Movement Disorders, 2021, 36, 2444-2446.	3.9	24
15	Prion Dissemination through the Environment and Medical Practices: Facts and Risks for Human Health. Clinical Microbiology Reviews, 2021, 34, e0005919.	13.6	8
16	Detection of CWD prions in naturally infected white-tailed deer fetuses and gestational tissues by PMCA. Scientific Reports, 2021, 11, 18385.	3.3	15
17	Longitudinal Assessment of Tau-Associated Pathology by 18F-THK5351 PET Imaging: A Histological, Biochemical, and Behavioral Study. Diagnostics, 2021, 11, 1874.	2.6	2
18	Modeling Traumatic Brain Injury in Human Cerebral Organoids. Cells, 2021, 10, 2683.	4.1	24

#	Article	IF	Citations
19	High diagnostic performance of independent alpha-synuclein seed amplification assays for detection of early Parkinson's disease. Acta Neuropathologica Communications, 2021, 9, 179.	5.2	86
20	(De)stabilization of Alpha-Synuclein Fibrillary Aggregation by Charged and Uncharged Surfactants. International Journal of Molecular Sciences, 2021, 22, 12509.	4.1	3
21	Uptake, Retention, and Excretion of Infectious Prions by Experimentally Exposed Earthworms. Emerging Infectious Diseases, 2021, 27, 3151-3154.	4.3	4
22	Protocol for controlled cortical impact in human cerebral organoids to model traumatic brain injury. STAR Protocols, 2021, 2, 100987.	1.2	5
23	Aged Cattle Brain Displays Alzheimer's Disease-Like Pathology and Promotes Brain Amyloidosis in a Transgenic Animal Model. Frontiers in Aging Neuroscience, 2021, 13, 815361.	3.4	3
24	Identification of Multicolor Fluorescent Probes for Heterogeneous Aβ Deposits in Alzheimer's Disease. Frontiers in Aging Neuroscience, 2021, 13, 802614.	3.4	3
25	The necroptosis machinery mediates axonal degeneration in a model of Parkinson disease. Cell Death and Differentiation, 2020, 27, 1169-1185.	11.2	71
26	Traumatic Brain Injury Induces Tau Aggregation and Spreading. Journal of Neurotrauma, 2020, 37, 80-92.	3.4	113
27	Preclinical Detection of Prions in Blood of Nonhuman Primates Infected with Variant Creutzfeldt-Jakob Disease. Emerging Infectious Diseases, 2020, 26, 34-43.	4.3	21
28	The ecology of chronic wasting disease in wildlife. Biological Reviews, 2020, 95, 393-408.	10.4	38
29	Infusion of blood from mice displaying cerebral amyloidosis accelerates amyloid pathology in animal models of Alzheimer's disease. Acta Neuropathologica Communications, 2020, 8, 213.	5.2	16
30	<scp>Alphaâ€Synuclein</scp> Oligomers and Neurofilament Light Chain in Spinal Fluid Differentiate Multiple System Atrophy from Lewy Body Synucleinopathies. Annals of Neurology, 2020, 88, 503-512.	5.3	78
31	Bacterial DNA promotes Tau aggregation. Scientific Reports, 2020, 10, 2369.	3.3	43
32	Discriminating α-synuclein strains in Parkinson's disease and multiple system atrophy. Nature, 2020, 578, 273-277.	27.8	479
33	Prion disease is accelerated in mice lacking stress-induced heat shock protein 70 (HSP70). Journal of Biological Chemistry, 2019, 294, 13619-13628.	3.4	23
34	Peripheral Delivery of Neural Precursor Cells Ameliorates Parkinson's Disease-Associated Pathology. Cells, 2019, 8, 1359.	4.1	5
35	Application of PMCA to screen for prion infection in a human cell line used to produce biological therapeutics. Scientific Reports, 2019, 9, 4847.	3.3	13
36	Comparative study of cerebrospinal fluid αâ€synuclein seeding aggregation assays for diagnosis of Parkinson's disease. Movement Disorders, 2019, 34, 536-544.	3.9	146

#	Article	IF	Citations
37	PMCA-replicated PrPD in urine of vCJD patients maintains infectivity and strain characteristics of brain PrPD: Transmission study. Scientific Reports, 2019, 9, 5191.	3.3	20
38	Detection of Misfolded α-Synuclein Aggregates in Cerebrospinal Fluid by the Protein Misfolding Cyclic Amplification Platform. Methods in Molecular Biology, 2019, 1948, 35-44.	0.9	16
39	Identification of circulating microRNA signatures as potential biomarkers in the serum of elk infected with chronic wasting disease. Scientific Reports, 2019, 9, 19705.	3.3	11
40	In Vitro detection of Chronic Wasting Disease (CWD) prions in semen and reproductive tissues of white tailed deer bucks (Odocoileus virginianus). PLoS ONE, 2019, 14, e0226560.	2.5	29
41	1,2,4â€trihydroxynaphthaleneâ€2â€Oâ€Î²â€Dâ€glucopyranoside delays amyloidâ€Î² ₄₂ aggregation reduces amyloid cytotoxicity. BioFactors, 2018, 44, 272-280.	and	2
42	Efficient prion disease transmission through common environmental materials. Journal of Biological Chemistry, 2018, 293, 3363-3373.	3.4	41
43	Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nature Neuroscience, 2018, 21, 1332-1340.	14.8	728
44	Genome-Wide Association and Mechanistic Studies Indicate That Immune Response Contributes to Alzheimer's Disease Development. Frontiers in Genetics, 2018, 9, 410.	2.3	50
45	Modeling amyloid beta and tau pathology in human cerebral organoids. Molecular Psychiatry, 2018, 23, 2363-2374.	7.9	249
46	Inhibition of protein misfolding and aggregation by natural phenolic compounds. Cellular and Molecular Life Sciences, 2018, 75, 3521-3538.	5.4	112
47	Prion-Like Protein Aggregates and Type 2 Diabetes. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a024315.	6.2	35
48	Pathways of Prion Spread during Early Chronic Wasting Disease in Deer. Journal of Virology, 2017, 91, .	3.4	55
49	Prion-like characteristics of the bacterial protein Microcin E492. Scientific Reports, 2017, 7, 45720.	3.3	28
50	The Endoplasmic Reticulum Chaperone GRP78/BiP Modulates Prion Propagation in vitro and in vivo. Scientific Reports, 2017, 7, 44723.	3.3	73
51	IRE1 signaling exacerbates Alzheimer's disease pathogenesis. Acta Neuropathologica, 2017, 134, 489-506.	7.7	147
52	Development of a Biochemical Diagnosis of Parkinson Disease by Detection of α-Synuclein Misfolded Aggregates in Cerebrospinal Fluid. JAMA Neurology, 2017, 74, 163.	9.0	312
53	Increased susceptibility to Aβ toxicity in neuronal cultures derived from familial Alzheimer's disease (PSEN1-A246E) induced pluripotent stem cells. Neuroscience Letters, 2017, 639, 74-81.	2.1	44
54	Induction of IAPP amyloid deposition and associated diabetic abnormalities by a prion-like mechanism. Journal of Experimental Medicine, 2017, 214, 2591-2610.	8.5	72

#	Article	IF	Citations
55	Detection of Prions in Blood of Cervids at the Asymptomatic Stage of Chronic Wasting Disease. Scientific Reports, 2017, 7, 17241.	3.3	40
56	Delaying aging in Caenorhabditis elegans with protein aggregation inhibitors. Biochemical and Biophysical Research Communications, 2017, 482, 62-67.	2.1	13
57	Amyloid-beta and tau pathology following repetitive mild traumatic brain injury. Biochemical and Biophysical Research Communications, 2017, 483, 1137-1142.	2.1	78
58	BDNF/NF-κB Signaling in the Neurobiology of Depression. Current Pharmaceutical Design, 2017, 23, 3154-3163.	1.9	162
59	Reduction of Blood Amyloid-β Oligomers in Alzheimer's Disease Transgenic Mice by c-Abl Kinase Inhibition. Journal of Alzheimer's Disease, 2016, 54, 1193-1205.	2.6	23
60	Detection of prions in blood from patients with variant Creutzfeldt-Jakob disease. Science Translational Medicine, 2016, 8, 370ra183.	12.4	120
61	Role of Prion Replication in the Strain-dependent Brain Regional Distribution of Prions. Journal of Biological Chemistry, 2016, 291, 12880-12887.	3.4	9
62	The stress of prion disease. Brain Research, 2016, 1648, 553-560.	2.2	23
63	Prions efficiently cross the intestinal barrier after oral administration: Study of the bioavailability, and cellular and tissue distribution in vivo. Scientific Reports, 2016, 6, 32338.	3.3	12
64	Strain-dependent profile of misfolded prion protein aggregates. Scientific Reports, 2016, 6, 20526.	3.3	35
65	Titration of biologically active amyloid–β seeds in a transgenic mouse model of Alzheimer's disease. Scientific Reports, 2015, 5, 9349.	3.3	36
66	Type 2 diabetes as a protein misfolding disease. Trends in Molecular Medicine, 2015, 21, 439-449.	6.7	255
67	Grass Plants Bind, Retain, Uptake, and Transport Infectious Prions. Cell Reports, 2015, 11, 1168-1175.	6.4	103
68	Prion-like features of misfolded $\hat{Al^2}$ and tau aggregates. Virus Research, 2015, 207, 106-112.	2.2	63
69	The Protein-disulfide Isomerase ERp57 Regulates the Steady-state Levels of the Prion Protein. Journal of Biological Chemistry, 2015, 290, 23631-23645.	3.4	48
70	Recent US Case of Variant Creutzfeldt-Jakob Diseaseâ€"Global Implications. Emerging Infectious Diseases, 2015, 21, 750-759.	4.3	32
71	Development of a Fluorescent Quenching Based High Throughput Assay to Screen for Calcineurin Inhibitors. PLoS ONE, 2015, 10, e0131297.	2.5	3
72	Aggregate-Depleted Brain Fails to Induce ${\rm Al}^2$ Deposition in a Mouse Model of Alzheimer's Disease. PLoS ONE, 2014, 9, e89014.	2.5	36

#	Article	IF	Citations
73	The Extent of Protease Resistance of Misfolded Prion Protein Is Highly Dependent on the Salt Concentration. Journal of Biological Chemistry, 2014, 289, 3073-3079.	3.4	8
74	Detection of Misfolded Al̂² Oligomers for Sensitive Biochemical Diagnosis of Alzheimer's Disease. Cell Reports, 2014, 7, 261-268.	6.4	154
75	Prions in the Urine of Patients with Variant Creutzfeldt–Jakob Disease. New England Journal of Medicine, 2014, 371, 530-539.	27.0	171
76	Peripherally administrated prions reach the brain at subâ€infectious quantities in experimental hamsters. FEBS Letters, 2014, 588, 795-800.	2.8	17
77	Brains from non-Alzheimer's individuals containing amyloid deposits accelerate Aβ deposition in vivo. Acta Neuropathologica Communications, 2013, 1, 76.	5.2	30
78	Smoking exacerbates amyloid pathology in a mouse model of Alzheimer's disease. Nature Communications, 2013, 4, 1495.	12.8	95
79	Role of Protein Misfolding and Proteostasis Deficiency in Protein Misfolding Diseases and Aging. International Journal of Cell Biology, 2013, 2013, 1-10.	2.5	108
80	Cross-Seeding of Misfolded Proteins: Implications for Etiology and Pathogenesis of Protein Misfolding Diseases. PLoS Pathogens, 2013, 9, e1003537.	4.7	164
81	Lack of prion transmission by sexual or parental routes in experimentally infected hamsters. Prion, 2013, 7, 412-419.	1.8	7
82	Protein Misfolding Cyclic Amplification. , 2013, , 83-92.		1
83	Microcin Amyloid Fibrils A Are Reservoir of Toxic Oligomeric Species. Journal of Biological Chemistry, 2012, 287, 11665-11676.	3.4	62
84	Natural Animal Models of Neurodegenerative Protein Misfolding Diseases. Current Pharmaceutical Design, 2012, 18, 1148-1158.	1.9	17
85	InÂVivo Spreading of Tau Pathology. Neuron, 2012, 73, 621-623.	8.1	26
86	Transmissible Proteins: Expanding the Prion Heresy. Cell, 2012, 149, 968-977.	28.9	196
87	Kosmotropic Anions Promote Conversion of Recombinant Prion Protein into a PrPSc-Like Misfolded Form. PLoS ONE, 2012, 7, e31678.	2.5	14
88	High-resolution structure of infectious prion protein: the final frontier. Nature Structural and Molecular Biology, 2012, 19, 370-377.	8.2	113
89	Protein misfolding cyclic amplification of infectious prions. Nature Protocols, 2012, 7, 1397-1409.	12.0	115
90	Cyclic Amplification of Prion Protein Misfolding. Methods in Molecular Biology, 2012, 849, 199-212.	0.9	44

#	Article	IF	CITATIONS
91	Role of Prion Protein Oligomers in the Pathogenesis of Transmissible Spongiform Encephalopathies. , 2012, , 319-335.		6
92	The intricate mechanisms of neurodegeneration in prion diseases. Trends in Molecular Medicine, 2011, 17, 14-24.	6.7	119
93	Misfolded protein aggregates: Mechanisms, structures and potential for disease transmission. Seminars in Cell and Developmental Biology, 2011, 22, 482-487.	5.0	180
94	Prion hypothesis: the end of the controversy?. Trends in Biochemical Sciences, 2011, 36, 151-158.	7.5	152
95	Initial fate of prions upon peripheral infection: halfâ€life, distribution, clearance, and tissue uptake. FASEB Journal, 2011, 25, 2792-2803.	0.5	17
96	Generation of a New Form of Human PrPSc in Vitro by Interspecies Transmission from Cervid Prions. Journal of Biological Chemistry, 2011, 286, 7490-7495.	3.4	110
97	Cellular factors implicated in prion replication. FEBS Letters, 2010, 584, 2409-2414.	2.8	49
98	Estimating prion concentration in fluids and tissues by quantitative PMCA. Nature Methods, 2010, 7, 519-520.	19.0	106
99	Prion Protein Misfolding Affects Calcium Homeostasis and Sensitizes Cells to Endoplasmic Reticulum Stress. PLoS ONE, 2010, 5, e15658.	2.5	71
100	Molecular Cross Talk between Misfolded Proteins in Animal Models of Alzheimer's and Prion Diseases. Journal of Neuroscience, 2010, 30, 4528-4535.	3.6	178
101	Calcineurin Inhibition at the Clinical Phase of Prion Disease Reduces Neurodegeneration, Improves Behavioral Alterations and Increases Animal Survival. PLoS Pathogens, 2010, 6, e1001138.	4.7	47
102	Generation of prions in vitro and the protein-only hypothesis. Prion, 2010, 4, 53-59.	1.8	23
103	Prion Strain Mutation Determined by Prion Protein Conformational Compatibility and Primary Structure. Science, 2010, 328, 1154-1158.	12.6	201
104	Constraining the loop, releasing prion infectivity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10-11.	7.1	81
105	De Novo Generation of Infectious Prions In Vitro Produces a New Disease Phenotype. PLoS Pathogens, 2009, 5, e1000421.	4.7	107
106	In Vivo Generation of Neurotoxic Prion Protein: Role for Hsp70 in Accumulation of Misfolded Isoforms. PLoS Genetics, 2009, 5, e1000507.	3.5	76
107	Prion Protein Glycosylation Is Not Required for Strain-Specific Neurotropism. Journal of Virology, 2009, 83, 5321-5328.	3.4	59
108	Therapeutic strategies against protein misfolding in neurodegenerative diseases. Expert Opinion on Drug Discovery, 2009, 4, 71-84.	5.0	6

#	Article	IF	Citations
109	Cross Currents in Protein Misfolding Disorders: Interactions and Therapy. CNS and Neurological Disorders - Drug Targets, 2009, 8, 363-371.	1.4	61
110	The infectious nature of protein misfolding disorders. FASEB Journal, 2009, 23, 91.2.	0.5	0
111	Cell-free propagation of prion strains. EMBO Journal, 2008, 27, 2557-2566.	7.8	164
112	Detection of infectious prions in urine. FEBS Letters, 2008, 582, 3161-3166.	2.8	103
113	Reduction of prion infectivity in packed red blood cells. Biochemical and Biophysical Research Communications, 2008, 377, 373-378.	2.1	21
114	Crossing the Species Barrier by PrPSc Replication In Vitro Generates Unique Infectious Prions. Cell, 2008, 134, 757-768.	28.9	179
115	Endoplasmic Reticulum Stress, PrP Trafficking, and Neurodegeneration. Developmental Cell, 2008, 15, 339-341.	7.0	10
116	Protein Misfolding and Neurodegeneration. Archives of Neurology, 2008, 65, 184-9.	4.5	286
117	Accelerated High Fidelity Prion Amplification Within and Across Prion Species Barriers. PLoS Pathogens, 2008, 4, e1000139.	4.7	118
118	Unfolded protein response transcription factor XBP-1 does not influence prion replication or pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 757-762.	7.1	141
119	Perturbation of Endoplasmic Reticulum Homeostasis Facilitates Prion Replication. Journal of Biological Chemistry, 2007, 282, 12725-12733.	3.4	57
120	The prion strain phenomenon: Molecular basis and unprecedented features. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 681-691.	3.8	141
121	Reduction of Prion Infectivity in Packed Red Cells by Separation of Whole Blood and Washing of the Red Cell Fraction Blood, 2007, 110, 2890-2890.	1.4	0
122	Protein Misfolding Cyclic Amplification for Diagnosis and Prion Propagation Studies. Methods in Enzymology, 2006, 412, 3-21.	1.0	117
123	Amyloids, prions and the inherent infectious nature of misfolded protein aggregates. Trends in Biochemical Sciences, 2006, 31, 150-155.	7. 5	241
124	Stressing Out the ER: A Role of the Unfolded Protein Response in Prion-Related Disorders. Current Molecular Medicine, 2006, 6, 37-43.	1.3	96
125	Presymptomatic Detection of Prions in Blood. Science, 2006, 313, 92-94.	12.6	219
126	Ultra-efficient Replication of Infectious Prions by Automated Protein Misfolding Cyclic Amplification. Journal of Biological Chemistry, 2006, 281, 35245-35252.	3.4	282

#	Article	IF	Citations
127	Cyclic Amplification of Protein Misfolding and Aggregation. , 2005, 299, 053-066.		55
128	Detection of prions in blood. Nature Medicine, 2005, 11, 982-985.	30.7	290
129	Protein Misfolding. , 2005, , 213-227.		0
130	Amyloid Formation Modulates the Biological Activity of a Bacterial Protein. Journal of Biological Chemistry, 2005, 280, 26880-26885.	3.4	119
131	Amyloid Inhibitors and Î ² -Sheet Breakers. , 2005, 38, 351-364.		43
132	In Vitro Generation of Infectious Scrapie Prions. Cell, 2005, 121, 195-206.	28.9	724
133	Pre-symptomatic detection of prions by cyclic amplification of protein misfolding. FEBS Letters, 2005, 579, 638-642.	2.8	127
134	The Disulfide Isomerase Grp58 Is a Protective Factor against Prion Neurotoxicity. Journal of Neuroscience, 2005, 25, 2793-2802.	3.6	190
135	The controversial protein-only hypothesis of prion propagation. Nature Medicine, 2004, 10, S63-S67.	30.7	91
136	Diagnosing prion diseases: needs, challenges and hopes. Nature Reviews Microbiology, 2004, 2, 809-819.	28.6	84
137	Passage of murine scrapie prion protein across the mouse vascular blood–brain barrier. Biochemical and Biophysical Research Communications, 2004, 318, 125-130.	2.1	29
138	Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO Journal, 2003, 22, 5435-5445.	7.8	355
139	Unfolding the role of protein misfolding in neurodegenerative diseases. Nature Reviews Neuroscience, 2003, 4, 49-60.	10.2	1,271
140	Is loss of function of the prion protein the cause of prion disorders?. Trends in Molecular Medicine, 2003, 9, 237-243.	6.7	66
141	Cyclic amplification of protein misfolding: application to prion-related disorders and beyond. Trends in Neurosciences, 2002, 25, 390-394.	8.6	144
142	Protein misfolding and disease; protein refolding and therapy. FEBS Letters, 2001, 498, 204-207.	2.8	292
143	Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature, 2001, 411, 810-813.	27.8	1,131
144	Cell-Lysate Conversion of Prion Protein into Its Protease-Resistant Isoform Suggests the Participation of a Cellular Chaperone. Biochemical and Biophysical Research Communications, 1999, 258, 470-475.	2.1	63

#	ARTICLE	IF	CITATIONS
145	The \hat{l}_{\pm} -Helical to \hat{l}^2 -Strand Transition in the Amino-terminal Fragment of the Amyloid \hat{l}^2 -Peptide Modulates Amyloid Formation. Journal of Biological Chemistry, 1995, 270, 3063-3067.	3.4	298