Horace H Loh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4028085/publications.pdf Version: 2024-02-01

HORACEHIOH

#	Article	IF	CITATIONS
1	Molecular Mechanisms and Regulation of Opioid Receptor Signaling. Annual Review of Pharmacology and Toxicology, 2000, 40, 389-430.	9.4	588
2	Effects of opioids on the immune system. Neurochemical Research, 1996, 21, 1375-1386.	3.3	179
3	Expression of the μâ€Opioid Receptor in CHO Cells: Ability of μâ€Opioid Ligands to Promote αâ€Azidoanilido[³² P]GTP Labeling of Multiple G Protein α Subunits. Journal of Neurochemistry, 1995, 64, 2534-2543.	3.9	90
4	Morphine self-administration in µ-opioid receptor-deficient mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2000, 361, 584-589.	3.0	76
5	Distinct Differences Between Morphine―and [<scp>d</scp> â€Ala ² , <i>N</i> ê€MePhe ⁴ ,Glyâ€ol ⁵]â€Enkephalin―μâ€ Receptor Complexes Demonstrated by Cyclic AMPâ€Dependent Protein Kinase Phosphorylation. Journal of Neurochemistry. 1998. 71. 231-239.	€Opioid	58
6	[3 H]Morphine binding is enhanced by IL-1-stimulated thymocyte proliferation. FEBS Letters, 1991, 287, 93-96.	2.8	43
7	Effect of Opioid on Adult Hippocampal Neurogenesis. Scientific World Journal, The, 2016, 2016, 1-7.	2.1	37
8	GRIN1 Regulates μ-Opioid Receptor Activities by Tethering the Receptor and G Protein in the Lipid Raft. Journal of Biological Chemistry, 2009, 284, 36521-36534.	3.4	32
9	NeuroD Modulates Opioid Agonist-Selective Regulation of Adult Neurogenesis and Contextual Memory Extinction. Neuropsychopharmacology, 2013, 38, 770-777.	5.4	31
10	Effects of addictive drugs on adult neural stem/progenitor cells. Cellular and Molecular Life Sciences, 2016, 73, 327-348.	5.4	28
11	Activation of delta-opioid receptor contributes to the antinociceptive effect of oxycodone in mice. Pharmacological Research, 2016, 111, 867-876.	7.1	26
12	Naltrexone Facilitates Learning and Delays Extinction by Increasing AMPA Receptor Phosphorylation and Membrane Insertion. Biological Psychiatry, 2016, 79, 906-916.	1.3	26
13	Morphine Promotes Astrocyte-Preferential Differentiation of Mouse Hippocampal Progenitor Cells via PKClµ-Dependent ERK Activation and TRBP Phosphorylation. Stem Cells, 2015, 33, 2762-2772.	3.2	25
14	Effects of dextromethorphan and oxycodone on treatment of neuropathic pain in mice. Journal of Biomedical Science, 2015, 22, 81.	7.0	24
15	Phosphorylation of poly(rC) binding protein 1 (PCBP1) contributes to stabilization of mu opioid receptor (MOR) mRNA via interaction with AU-rich element RNA-binding protein 1 (AUF1) and poly A binding protein (PABP). Gene, 2017, 598, 113-130.	2.2	22
16	Srcâ€dependent phosphorylation of μâ€opioid receptor at Tyr ³³⁶ modulates opiate withdrawal. EMBO Molecular Medicine, 2017, 9, 1521-1536.	6.9	20
17	Morphine Modulates Adult Neurogenesis and Contextual Memory by Impeding the Maturation of Neural Progenitors. PLoS ONE, 2016, 11, e0153628.	2.5	20
18	Morphine drives internal ribosome entry site-mediated hnRNP K translation in neurons through opioid receptor-dependent signaling. Nucleic Acids Research, 2014, 42, 13012-13025.	14.5	18

Horace H Loh

#	Article	IF	CITATIONS
19	Neurod1 Modulates Opioid Antinociceptive Tolerance via Two Distinct Mechanisms. Biological Psychiatry, 2014, 76, 775-784.	1.3	17
20	Covalently Induced Activation of the δOpioid Receptor by a Fluorogenic Affinity Label, 7â€~-(Phthalaldehydecarboxamido)naltrindole (PNTI). Journal of Medicinal Chemistry, 2001, 44, 1017-1020.	6.4	16
21	Morphine regulates adult neurogenesis and contextual memory extinction via the PKCε/Prox1 pathway. Neuropharmacology, 2018, 141, 126-138.	4.1	16
22	BPR1M97, a dual mu opioid receptor/nociceptin-orphanin FQ peptide receptor agonist, produces potent antinociceptive effects with safer properties than morphine. Neuropharmacology, 2020, 166, 107678.	4.1	13
23	Discovery, structure–activity relationship studies, and anti-nociceptive effects of 1-phenyl-3,6,6-trimethyl-1,5,6,7-tetrahydro-4H-indazol-4-one as novel opioid receptor agonists. Bioorganic and Medicinal Chemistry, 2014, 22, 4694-4703.	3.0	12
24	Discovery, structure-activity relationship studies, and anti-nociceptive effects of N-(1,2,3,4-tetrahydro-1-isoquinolinylmethyl)benzamides as novel opioid receptor agonists. European Journal of Medicinal Chemistry, 2017, 126, 202-217.	5.5	12
25	Post-Transcriptional Regulation of the Human Mu-Opioid Receptor (MOR) by Morphine-Induced RNA Binding Proteins hnRNP K and PCBP1. Journal of Cellular Physiology, 2017, 232, 576-584.	4.1	11
26	Temporal effect of manipulating NeuroD1 expression with the synthetic small molecule KHS101 on morphine contextual memory. Neuropharmacology, 2017, 126, 58-69.	4.1	11
27	Delta-opioid receptor antagonist naltrindole reduces oxycodone addiction and constipation in mice. European Journal of Pharmacology, 2019, 852, 265-273.	3.5	11
28	Kappa opioid receptor controls neural stem cell differentiation via a miR-7a/Pax6 dependent pathway. Stem Cells, 2021, 39, 600-616.	3.2	11
29	Opioid doses required for pain management in lung cancer patients with different cholesterol levels: negative correlation between opioid doses and cholesterol levels. Lipids in Health and Disease, 2016, 15, 47.	3.0	10
30	Morphine and Naloxone Facilitate Neural Stem Cells Proliferation via a TET1-Dependent and Receptor-Independent Pathway. Cell Reports, 2020, 30, 3625-3631.e6.	6.4	10
31	Naloxone regulates the differentiation of neural stem cells via a receptorâ€independent pathway. FASEB Journal, 2020, 34, 5917-5930.	0.5	10
32	Modulation of <scp>mTOR</scp> Activity by <i>μ</i> â€Opioid Receptor is Dependent upon the Association of Receptor and <scp>FK</scp> 506â€Binding Protein 12. CNS Neuroscience and Therapeutics, 2015, 21, 591-598.	3.9	9
33	Epigenetic Activation of <i>μ</i> Opioid Receptor Gene via Increased Expression and Function of Mitogen- and Stress-Activated Protein Kinase 1. Molecular Pharmacology, 2017, 91, 357-372.	2.3	9
34	Spinal or supraspinal phosphorylation deficiency at the MOR C-terminus does not affect morphine tolerance in vivo. Pharmacological Research, 2017, 119, 153-168.	7.1	9
35	Role of FK506 binding protein 12 in morphine-induced μ-opioid receptor internalization and desensitization. Neuroscience Letters, 2014, 566, 231-235.	2.1	8
36	Mapping the naloxone binding sites on the mu-opioid receptor using cell-based photocrosslinkers. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 336-343.	2.3	7

Horace H Loh

#	Article	IF	CITATIONS
37	The inÂvivo antinociceptive and μ-opioid receptor activating effects of the combination of N-phenyl-2′,4′-dimethyl-4,5′-bi-1,3-thiazol-2-amines and naloxone. European Journal of Medicinal Chemistry, 2019, 167, 312-323.	5.5	6
38	Differential regulation of mouse and human Mu opioid receptor gene depends on the single stranded DNA structure of its promoter and α-complex protein 1. Biomedical Reports, 2017, 6, 532-538.	2.0	3
39	Naloxone Facilitates Contextual Learning and Memory in a Receptor-Independent and Tet1-Dependent Manner. Cellular and Molecular Neurobiology, 2021, 41, 1031-1038.	3.3	3
40	Betaâ€arrestin 1 and betaâ€arrestin 2 differentially direct the phosphorylationâ€dependent and â€independent internalization and desensitization of deltaâ€opioid receptor. FASEB Journal, 2006, 20, A251.	0.5	0
41	Investigation of mechanism underlying the nuclear export of poly C binding protein 1 in neuronal cells. FASEB Journal, 2006, 20, A80.	0.5	0
42	Muâ€Opioid receptor (MOR) exocytosis is regulated by its interaction with RPN1. FASEB Journal, 2007, 21, A979.	0.5	0
43	Agonistâ€direct Muâ€opioid Receptor Desensitization. FASEB Journal, 2007, 21, A426.	0.5	0
44	Morphine regulates dopaminergic system via miRâ€133b and Pitx3 in zebrafish embryos. FASEB Journal, 2010, 24, 766.10.	0.5	0
45	Phosphorylation of Yin Yang 1 mediates fentanylâ€induced decrease in miRâ€190 expression. FASEB Journal, 2010, 24, 855.11.	0.5	0
46	Activation of PKCα or PKCÎμ as an approach to increase morphine tolerance in respiratory depression and lethal overdose. FASEB Journal, 2012, 26, 839.6.	0.5	0