
Tobias J Kippenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4027847/publications.pdf Version: 2024-02-01

TOBIAS | KIDDENBERC

#	Article	IF	CITATIONS
1	Roadmap on multimode light shaping. Journal of Optics (United Kingdom), 2022, 24, 013001.	1.0	41
2	Polarization selective ultra-broadband wavelength conversion in silicon nitride waveguides. Optics Express, 2022, 30, 4342.	1.7	7
3	Microresonator Dissipative Kerr Solitons Synchronized to an Optoelectronic Oscillator. Physical Review Applied, 2022, 17, .	1.5	7
4	Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits. Communications Physics, 2022, 5, .	2.0	36
5	Platicon microcomb generation using laser self-injection locking. Nature Communications, 2022, 13, 1771.	5.8	39
6	Protected generation of dissipative Kerr solitons in supermodes of coupled optical microresonators. Science Advances, 2022, 8, eabm6982.	4.7	16
7	Strained crystalline nanomechanical resonators with quality factors above 10 billion. Nature Physics, 2022, 18, 436-441.	6.5	31
8	Dissipative Quantum Feedback in Measurements Using a Parametrically Coupled Microcavity. PRX Quantum, 2022, 3, .	3.5	6
9	Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity. Nature Communications, 2022, 13, 2065.	5.8	23
10	Near ultraviolet photonic integrated lasers based on silicon nitride. APL Photonics, 2022, 7, .	3.0	25
11	Synthesis of near-diffraction-free orbital-angular-momentum space-time wave packets having a controllable group velocity using a frequency comb. Optics Express, 2022, 30, 16712.	1.7	7
12	Perimeter Modes of Nanomechanical Resonators Exhibit Quality Factors Exceeding <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mrow><r at Room Temperature. Physical Review X, 2022, 12, .</r </mml:mrow></mml:msup></mml:mrow></mml:math 	nml 218 7>9	
13	Hierarchical tensile structures with ultralow mechanical dissipation. Nature Communications, 2022, 13, .	5.8	21
14	Low-noise frequency-agile photonic integrated lasers for coherent ranging. Nature Communications, 2022, 13, .	5.8	39
15	Probing material absorption and optical nonlinearity of integrated photonic materials. Nature Communications, 2022, 13, .	5.8	27
16	Dual chirped microcomb based parallel ranging at megapixel-line rates. Nature Communications, 2022, 13, .	5.8	18
17	A photonic integrated circuit–based erbium-doped amplifier. Science, 2022, 376, 1309-1313.	6.0	95
18	Dynamics of soliton self-injection locking in optical microresonators. Nature Communications, 2021, 12, 235.	5.8	86

#	Article	IF	CITATIONS
19	High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. , 2021, , .		3
20	Megapixel per second hardware efficient LiDAR based on microcombs. , 2021, , .		1
21	Soliton microcomb based spectral domain optical coherence tomography. Nature Communications, 2021, 12, 427.	5.8	45
22	Continuous-wave electron-photon interactions using chip-based high-Q Si3N4 microresonator. , 2021, , .		0
23	Parallel convolutional processing using an integrated photonic tensor core. Nature, 2021, 589, 52-58.	13.7	723
24	Actuation bandwidth extension of an integrated piezo-optomechanical nanophotonic device. , 2021, , .		0
25	Symmetry protection against mode crossings in multimode photonic resonator chains. , 2021, , .		2
26	Emergent nonlinear phenomena in a driven dissipative photonic dimer. Nature Physics, 2021, 17, 604-610.	6.5	57
27	Gain-switched semiconductor laser driven soliton microcombs. Nature Communications, 2021, 12, 1425.	5.8	27
28	Automated wide-ranged finely tunable microwave cavity for narrowband phase noise filtering. Review of Scientific Instruments, 2021, 92, 034710.	0.6	1
29	Low-Loss Integrated Nanophotonic Circuits with Layered Semiconductor Materials. Nano Letters, 2021, 21, 2709-2718.	4.5	24
30	Difference-frequency generation in optically poled silicon nitride waveguides. Nanophotonics, 2021, 10, 1923-1930.	2.9	7
31	High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nature Communications, 2021, 12, 2236.	5.8	157
32	A cryogenic electro-optic interconnect for superconducting devices. Nature Electronics, 2021, 4, 326-332.	13.1	43
33	Intrinsic luminescence blinking from plasmonic nanojunctions. Nature Communications, 2021, 12, 2731.	5.8	25
34	Photonic chip-based resonant supercontinuum via pulse-driven Kerr microresonator solitons. Optica, 2021, 8, 771.	4.8	33
35	Symmetry protection against mode crossings for dissipative Kerr soliton generation in microresonator chains. , 2021, , .		0
36	Zero-dispersion solitons in microresonators with octave-spanning dispersive wave formation. , 2021, , .		0

#	Article	IF	CITATIONS
37	Optical Gyrator and Microwave-to-Optical Converter using HBAR modes. , 2021, , .		Ο
38	Continuous-wave electron-light interaction in high-Q whispering gallery microresonators. , 2021, , .		0
39	Low-noise, Frequency-agile, Hybrid Integrated Laser for LiDAR. , 2021, , .		0
40	Single-pixel massively parallel coherent LiDAR using on dual soliton microcombs. , 2021, , .		0
41	High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. , 2021, , .		1
42	A High Cooperativity Silicon Nitride Optomechanical Transducer. , 2021, , .		0
43	Dissipative Kerr solitons in a photonic dimer on both sides of exceptional point. Communications Physics, 2021, 4, .	2.0	18
44	Laser soliton microcombs heterogeneously integrated on silicon. Science, 2021, 373, 99-103.	6.0	173
45	Nanofabrication meets open science. Nature Nanotechnology, 2021, 16, 850-852.	15.6	2
46	High-Q photonic chip-based temporal phase plates for electron microscopy. Microscopy and Microanalysis, 2021, 27, 3132-3133.	0.2	0
47	Integrated Magnetic-free Nitride Optical Isolator. , 2021, , .		0
48	Ultra-narrow linewidth lasers and microcombs based on self-injection locking in integrated photonics (Invited). , 2021, , .		0
49	Coherent terahertz-to-microwave link using electro-optic-modulated Turing rolls. Physical Review A, 2021, 104, .	1.0	3
50	Time-resolved detection of phase-coherent biphoton frequency combs from Si3N4 microring. , 2021, , .		1
51	Collective dynamics in nonlinear resonators coupled in spatial and synthetic dimensions. , 2021, , .		0
52	Optical Gyrator and Microwave-to-Optical Converter using HBAR modes. , 2021, , .		0
53	A high-cooperativity, nano-optomechanical system comprised of high stress Si3N4. , 2021, , .		0
54	Low-noise, Frequency-agile, Hybrid Integrated Lasers for LiDAR. , 2021, , .		4

Low-noise, Frequency-agile, Hybrid Integrated Lasers for LiDAR. , 2021, , . 54

#	Article	IF	CITATIONS
55	Gain-switched semiconductor laser driven soliton microcombs. , 2021, , .		1
56	X-Band Aom on Chip. , 2021, , .		1
57	Magnetic-free silicon nitride integrated optical isolator. Nature Photonics, 2021, 15, 828-836.	15.6	67
58	Ultrafast optical circuit switching for data centers using integrated soliton microcombs. Nature Communications, 2021, 12, 5867.	5.8	31
59	320 GHz Analog-to-Digital Converter Exploiting Kerr Soliton Combs and Photonic-Electronic Spectral Stitching. , 2021, , .		6
60	Polarization selective ultra-broadband wavelength conversion in silicon nitride waveguide. , 2021, , .		0
61	Fully self-contained turn-key soliton microcomb source. , 2021, , .		Ο
62	Continuous-wave frequency upconversion with a molecular optomechanical nanocavity. Science, 2021, 374, 1264-1267.	6.0	63
63	Ultra-compact and ultra highâ \in Q photonic chip based optical reference cavity at 1550nm. , 2021, , .		Ο
64	Fully selfâ \in 'contained turnâ \in 'key soliton microcomb source. , 2021, , .		0
65	Integrated photonics enables continuous-beam electron phase modulation. Nature, 2021, 600, 653-658.	13.7	74
66	Chip-based frequency combs for wavelength-division multiplexing applications. , 2020, , 51-102.		1
67	Observation of Stimulated Brillouin Scattering in Silicon Nitride Integrated Waveguides. Physical Review Letters, 2020, 124, 013902.	2.9	67
68	Formation Rules and Dynamics of Photoinduced χ ⁽²⁾ Gratings in Silicon Nitride Waveguides. ACS Photonics, 2020, 7, 147-153.	3.2	21
69	Integrated gallium phosphide nonlinear photonics. Nature Photonics, 2020, 14, 57-62.	15.6	185
70	Frequency division using a soliton-injected semiconductor gain-switched frequency comb. Science Advances, 2020, 6, .	4.7	21
71	Monolithic piezoelectric control of soliton microcombs. Nature, 2020, 583, 385-390.	13.7	109
72	Nonlinear states and dynamics in a synthetic frequency dimension. Physical Review A, 2020, 102, .	1.0	30

#	Article	IF	CITATIONS
73	Monolithic piezoelectric control of soliton microcombs. , 2020, , .		12
74	Reconfigurable radiofrequency filters based on versatile soliton microcombs. Nature Communications, 2020, 11, 4377.	5.8	38
75	Microresonator soliton based massively parallel coherent LiDAR. , 2020, , .		Ο
76	Molecular Platform for Frequency Upconversion at the Single-Photon Level. Physical Review X, 2020, 10, .	2.8	24
77	Massively parallel coherent laser ranging using a soliton microcomb. Nature, 2020, 581, 164-170.	13.7	325
78	Controlling free electrons with optical whispering-gallery modes. Nature, 2020, 582, 46-49.	13.7	132
79	Heteronuclear soliton molecules in optical microresonators. Nature Communications, 2020, 11, 2402.	5.8	56
80	Integrated turnkey soliton microcombs. Nature, 2020, 582, 365-369.	13.7	295
81	Hybrid integrated photonics using bulk acoustic resonators. Nature Communications, 2020, 11, 3073.	5.8	65
82	Fractal-like Mechanical Resonators with a Soft-Clamped Fundamental Mode. Physical Review Letters, 2020, 124, 025502.	2.9	31
83	Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator. Nature Communications, 2020, 11, 374.	5.8	97
84	Laser Cooling of a Nanomechanical Oscillator to Its Zero-Point Energy. Physical Review Letters, 2020, 124, 173601.	2.9	55
85	Formation and Collision of Multistability-Enabled Composite Dissipative Kerr Solitons. Physical Review X, 2020, 10, .	2.8	15
86	Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nature Photonics, 2020, 14, 486-491.	15.6	229
87	Wafer-scale fabrication of ultralow-loss silicon nitride nonlinear photonic circuits. , 2020, , .		1
88	Integrated turnkey soliton microcombs operated at CMOS frequencies. , 2020, , .		1
89	Hybrid Si3N4-LiNbO3 integrated platform for electro-optic conversion. , 2020, , .		2
90	Laser Self-Injection Locked Frequency Combs in a Normal GVD Integrated Microresonator. , 2020, , .		2

#	Article	IF	CITATIONS
91	Monolithic piezoelectric control of integrated soliton microcombs. , 2020, , .		1
92	Chip-based soliton microcomb module using a hybrid semiconductor laser. Optics Express, 2020, 28, 2714.	1.7	18
93	Performance of chip-scale optical frequency comb generators in coherent WDM communications. Optics Express, 2020, 28, 12897.	1.7	35
94	Parallel gas spectroscopy using mid-infrared supercontinuum from a single Si ₃ N ₄ waveguide. Optics Letters, 2020, 45, 2195.	1.7	26
95	Nanophotonic supercontinuum-based mid-infrared dual-comb spectroscopy. Optica, 2020, 7, 1181.	4.8	43
96	Thermal intermodulation noise in cavity-based measurements. Optica, 2020, 7, 1609.	4.8	15
97	Broadband quasi-phase-matching in dispersion-engineered all-optically poled silicon nitride waveguides. Photonics Research, 2020, 8, 1475.	3.4	10
98	Spectral multiplexing of dissipative Kerr solitons in a single optical microresonator. , 2020, , .		1
99	Reconfigurable Radiofrequency Photonic Filters Based on Soliton Microcombs. , 2020, , .		0
100	Massively parallel coherent LiDAR using dissipative Kerr solitons. , 2020, , .		0
101	Toward Quantum Optics with Free Electrons. Optics and Photonics News, 2020, 31, 35.	0.4	0
102	Massively parallel coherent LiDAR using dissipative Kerr solitons. , 2020, , .		1
103	Microresonator Dual-Comb Coherent FMCW LiDAR. , 2020, , .		1
104	Frequency Division Using a Soliton-Injected Semiconductor Gain-Switched Frequency Comb. , 2020, , .		0
105	Observation of stimulated Brillouin scattering in silicon nitride integrated waveguides. , 2020, , .		0
106	Photonic chip-based resonant supercontinuum generation with intrinsic nonlinear filtering. , 2020, , .		0
107	Dynamics of Soliton Microcomb Self-Injection Locking in a Silicon Nitride Microresonator. , 2020, , .		1
108	Multistability-Enabled Complex Soliton Dynamics in a Bichromatically Driven Optical Microresonator.		0

, 2020, , .

#	Article	IF	CITATIONS
109	Dissipative Kerr solitons in a photonic dimer. , 2020, , .		0
110	Photonic chip-based resonant supercontinuum generation with intrinsic nonlinear filtering. , 2020, , .		0
111	Kramers–Kronig detection of four 20  Gbaud 16-QAM channels using Kerr combs for a shared phase estimation. Optics Letters, 2020, 45, 1794.	1.7	1
112	Resonant Supercontinuum Generation in Normal and Anomalous Dispersion. , 2020, , .		0
113	Dissipative Kerr solitons in a photonic dimer. , 2020, , .		0
114	In memory of Mikhail Gorodetsky. Nature Photonics, 2019, 13, 506-508.	15.6	0
115	Thermorefractive noise in silicon-nitride microresonators. Physical Review A, 2019, 99, .	1.0	74
116	Two-Tone Optomechanical Instability and Its Fundamental Implications for Backaction-Evading Measurements. Physical Review X, 2019, 9, .	2.8	12
117	Optically Probed Time Dynamics of \ddot{i} ‡(2) Grating Inscription in SiN Waveguides. , 2019, , .		0
118	Photonic Integrated Microwave Oscillator Based on Silicon Nitride Soliton Microcomb. , 2019, , .		0
119	Properties of Broadband Soliton Microcombs in Pulse-Driven Integrated Microresonators. , 2019, , .		0
120	Dynamics of soliton crystals in optical microresonators. Nature Physics, 2019, 15, 1071-1077.	6.5	148
121	Demonstration of Multiple Kerr-Frequency-Comb Generation Using Different Lines From Another Kerr Comb Located Up To 50 km Away. Journal of Lightwave Technology, 2019, 37, 579-584.	2.7	15
122	Optical backaction-evading measurement of a mechanical oscillator. Nature Communications, 2019, 10, 2086.	5.8	49
123	Generalized dissipation dilution in strained mechanical resonators. Physical Review B, 2019, 99, .	1.1	47
124	Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum. Nature Communications, 2019, 10, 1553.	5.8	133
125	Electrically pumped photonic integrated soliton microcomb. Nature Communications, 2019, 10, 680.	5.8	160
126	Clamp-Tapering Increases the Quality Factor of Stressed Nanobeams. Nano Letters, 2019, 19, 2329-2333.	4.5	25

#	Article	IF	CITATIONS
127	Photonic-chip-based frequency combs. Nature Photonics, 2019, 13, 158-169.	15.6	618
128	Photonic Chip-Based Soliton Microcomb Driven by a Compact Ultra-Low-Noise Laser. , 2019, , .		0
129	Polychromatic Cherenkov Radiation Induced Group Velocity Symmetry Breaking in Counterpropagating Dissipative Kerr Solitons. Physical Review Letters, 2019, 123, 253902.	2.9	16
130	Floquet dynamics in the quantum measurement of mechanical motion. Physical Review A, 2019, 100, .	1.0	13
131	Nanophotonic Supercontinuum-Based Mid-Infrared Dual-Comb Spectroscopy. , 2019, , .		0
132	Spectral Purification of Microwave Signals with Disciplined Dissipative Kerr Solitons. Physical Review Letters, 2019, 122, 013902.	2.9	58
133	A microphotonic astrocomb. Nature Photonics, 2019, 13, 31-35.	15.6	215
134	Heteronuclear Soliton Molecules in Optical Microresonators. , 2019, , .		3
135	High-rate photon pairs and sequential Time-Bin entanglement with Si ₃ N ₄ microring resonators. Optics Express, 2019, 27, 19309.	1.7	38
136	Second- and third-order nonlinear wavelength conversion in an all-optically poled Si ₃ N ₄ waveguide. Optics Letters, 2019, 44, 106.	1.7	20
137	Orthogonally polarized frequency comb generation from a Kerr comb via cross-phase modulation. Optics Letters, 2019, 44, 1472.	1.7	32
138	Thermally stable access to microresonator solitons via slow pump modulation. Optics Letters, 2019, 44, 4447.	1.7	35
139	Visible-near-middle infrared spanning supercontinuum generation in a silicon nitride (Si ₃ N ₄) waveguide. Optical Materials Express, 2019, 9, 2553.	1.6	23
140	Electrically driven photonic integrated soliton microcomb. , 2019, , .		3
141	Electrically Driven Ultra-compact Photonic Integrated Soliton Microcomb. , 2019, , .		0
142	Kerr Comb-based Transfer Oscillator for Ultralow Noise Photonic Microwave Synthesis. , 2019, , .		0
143	Advanced dispersion engineering of dispersive waves in Si3N4 microresonators. , 2019, , .		0
144	Ultra-low dissipation mechanical resonators for cavity optomechanics. , 2019, , .		0

#	Article	IF	CITATIONS
145	Thermo-refractive noise in silicon nitride microresonators. , 2019, , .		1
146	Integrated Si3N4 Soliton Microcomb Driven by a Compact Ultra-low-noise Laser. , 2019, , .		0
147	Multiplexing soliton-combs in optical microresonators. , 2019, , .		0
148	Dual comb generation in a monochromatically driven crystalline microresonator. , 2019, , .		0
149	Reconfigurable optical generation of nine Nyquist WDM channels with sinc-shaped temporal pulse trains using a single microresonator-based Kerr frequency comb. Optics Letters, 2019, 44, 1852.	1.7	11
150	Ultrafast optical ranging using microresonator soliton frequency combs. Science, 2018, 359, 887-891.	6.0	509
151	An optical-frequency synthesizer using integrated photonics. Nature, 2018, 557, 81-85.	13.7	550
152	Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nature Photonics, 2018, 12, 330-335.	15.6	201
153	Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators. Nano Letters, 2018, 18, 3138-3146.	4.5	48
154	Elastic strain engineering for ultralow mechanical dissipation. Science, 2018, 360, 764-768.	6.0	219
155	Quantum-Limited Directional Amplifiers with Optomechanics. Physical Review Letters, 2018, 120, 023601.	2.9	120
156	PORT: A piezoelectric optical resonance tuner. , 2018, , .		4
157	Photonic chip-based soliton frequency combs covering the biological imaging window. Nature Communications, 2018, 9, 1146.	5.8	62
158	Ultralow-power chip-based soliton microcombs for photonic integration. Optica, 2018, 5, 1347.	4.8	143
159	Nonreciprocal Reconfigurable Microwave Optomechanical Circuit. , 2018, , .		0
160	Ultralow-Power Photonic Chip-Based Soliton Frequency Combs. , 2018, , .		0
161	From the Lugiato–Lefever equation to microresonator-based soliton Kerr frequency combs. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20180113.	1.6	76
162	Elastic Strain Engineering for Ultralow Mechanical Dissipation. , 2018, , .		0

#	Article	IF	CITATIONS
163	Microresonator Soliton Frequency Comb. , 2018, , .		Ο
164	Spatial multiplexing of soliton microcombs. Nature Photonics, 2018, 12, 699-705.	15.6	100
165	Backaction-Evading Measurement of Mechanical Motion in the Optical Domain. , 2018, , .		0
166	Quantum Motional Sideband Asymmetry in the Presence of Kerr-Type Nonlinearities. , 2018, , .		2
167	Photonic Damascene Process for Low-Loss, High-Confinement Silicon Nitride Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-11.	1.9	101
168	Highly efficient coupling of crystalline microresonators to integrated photonic waveguides. Optics Letters, 2018, 43, 2106.	1.7	20
169	Double inverse nanotapers for efficient light coupling to integrated photonic devices. Optics Letters, 2018, 43, 3200.	1.7	50
170	Effects of erbium-doped fiber amplifier induced pump noise on soliton Kerr frequency combs for 64-quadrature amplitude modulation transmission. Optics Letters, 2018, 43, 2495.	1.7	8
171	Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins. Optica, 2018, 5, 884.	4.8	147
172	Nonreciprocity in Microwave Optomechanical Circuits. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 1983-1987.	2.4	4
173	Spatially-Multiplexed Solitons in Optical Microresonators. , 2018, , .		0
174	Dissipative Kerr solitons in optical microresonators. Science, 2018, 361, .	6.0	1,069
175	Scalable and reconfigurable optical tapped-delay-line for multichannel equalization and correlation using nonlinear wave mixing and a Kerr frequency comb. Optics Letters, 2018, 43, 5563.	1.7	13
176	Appearance and Disappearance of Quantum Correlations in Measurement-Based Feedback Control of a Mechanical Oscillator. Physical Review X, 2017, 7, .	2.8	52
177	Coupling Ideality of Integrated Planar High- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi>Microresonators. Physical Review Applied, 2017, 7, .</mml:math 	1.5	57
178	Self-referenced photonic chip soliton Kerr frequency comb. Light: Science and Applications, 2017, 6, e16202-e16202.	7.7	95
179	A dissipative quantum reservoir for microwave light using a mechanical oscillator. Nature Physics, 2017, 13, 787-793.	6.5	76
180	Microresonator-based solitons for massively parallel coherent optical communications. Nature, 2017, 546, 274-279.	13.7	816

#	Article	IF	CITATIONS
181	Radiation and Internal Loss Engineering of High-Stress Silicon Nitride Nanobeams. Nano Letters, 2017, 17, 3501-3505.	4.5	38
182	Breathing dissipative solitons in optical microresonators. Nature Communications, 2017, 8, 736.	5.8	139
183	Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nature Communications, 2017, 8, 1016.	5.8	85
184	Nonreciprocal reconfigurable microwave optomechanical circuit. Nature Communications, 2017, 8, 604.	5.8	231
185	Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators. Physical Review A, 2017, 95, .	1.0	47
186	Universal dynamics and deterministic switching ofÂdissipative Kerr solitons in optical microresonators. Nature Physics, 2017, 13, 94-102.	6.5	331
187	Recent advances on nonlinear optics in Silicon Nitride waveguides. , 2017, , .		Ο
188	Tunable insertion of multiple lines into a Kerr frequency comb using electro-optical modulators. Optics Letters, 2017, 42, 3765.	1.7	10
189	Octave-spanning dissipative Kerr soliton frequency combs in Si_3N_4 microresonators. Optica, 2017, 4, 684.	4.8	208
190	Dual-pump generation of high-coherence primary Kerr combs with multiple sub-lines. Optics Letters, 2017, 42, 595.	1.7	17
191	Soliton dual frequency combs in crystalline microresonators. Optics Letters, 2017, 42, 514.	1.7	81
192	Dynamics of soliton crystals in optical microresonators. , 2017, , .		4
193	Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon. Optics Letters, 2017, 42, 803.	1.7	116
194	Pump-linewidth-tolerant wavelength multicasting using soliton Kerr frequency combs. Optics Letters, 2017, 42, 3177.	1.7	14
195	Force metrology using quantum correlations of light due to a room-temperature mechanical oscillator. , 2017, , .		1
196	Dependence of a microresonator Kerr frequency comb on the pump linewidth. Optics Letters, 2017, 42, 779.	1.7	21
197	Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Optics Express, 2016, 24, 29312.	1.7	90
198	Harmonization of chaos into a soliton in Kerr frequency combs. Optics Express, 2016, 24, 27382.	1.7	48

#	Article	IF	CITATIONS
199	A strongly coupled $\hat{\mathbf{b}}$ -type micromechanical system. Applied Physics Letters, 2016, 108, .	1.5	23
200	Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics. Optica, 2016, 3, 20.	4.8	243
201	Raman Self-Frequency Shift of Dissipative Kerr Solitons in an Optical Microresonator. Physical Review Letters, 2016, 116, 103902.	2.9	187
202	Frequency-comb-assisted broadband precision spectroscopy with cascaded diode lasers. Optics Letters, 2016, 41, 3134.	1.7	31
203	Near-Field Integration of a SiN Nanobeam and a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>SiO</mml:mi><mml:mn>2</mml:mn></mml:msub>Microcav for Heisenberg-Limited Displacement Sensing, Physical Review Applied, 2016, 5, .</mml:math 	vitÿ ⁵	48
204	On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator. Physical Review A, 2016, 94, .	1.0	72
205	Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation. Optics Letters, 2016, 41, 452.	1.7	65
206	Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science, 2016, 351, 357-360.	6.0	613
207	Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. Nature Nanotechnology, 2016, 11, 164-169.	15.6	206
208	All-optical stabilization of a soliton frequency comb in a crystalline microresonator. Optics Letters, 2015, 40, 4723.	1.7	21
209	Plasmomechanical Resonators Based on Dimer Nanoantennas. Nano Letters, 2015, 15, 3971-3976.	4.5	45
210	Frequency combs and platicons in optical microresonators with normal GVD. Optics Express, 2015, 23, 7713.	1.7	146
211	Counting the cycles of light using a self-referenced optical microresonator. Optica, 2015, 2, 706.	4.8	80
212	Measurement-based control of a mechanical oscillator at its thermal decoherence rate. Nature, 2015, 524, 325-329.	13.7	245
213	Cavity optomechanics. Reviews of Modern Physics, 2014, 86, 1391-1452.	16.4	4,064
214	Radiation hardness of high-Q silicon nitride microresonators for space compatible integrated optics. Optics Express, 2014, 22, 30786.	1.7	39
215	Temporal solitons in optical microresonators. Nature Photonics, 2014, 8, 145-152.	15.6	1,430
216	Mode Spectrum and Temporal Soliton Formation in Optical Microresonators. Physical Review Letters, 2014, 113, 123901.	2.9	231

#	Article	IF	CITATIONS
217	Coherent terabit communications with microresonator Kerr frequency combs. Nature Photonics, 2014, 8, 375-380.	15.6	526
218	Phase noise measurement of external cavity diode lasers and implications for optomechanical sideband cooling of GHz mechanical modes. New Journal of Physics, 2013, 15, 015019.	1.2	23
219	Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nature Communications, 2013, 4, 1345.	5.8	250
220	Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics. Nature Physics, 2013, 9, 179-184.	6.5	150
221	Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition. Optics Express, 2012, 20, 27661.	1.7	88
222	Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photonics, 2012, 6, 480-487.	15.6	521
223	Microresonator-Based Optical Frequency Combs. Science, 2011, 332, 555-559.	6.0	1,685
224	Octave Spanning Tunable Frequency Comb from a Microresonator. Physical Review Letters, 2011, 107, 063901.	2.9	289
225	Optomechanically Induced Transparency. Science, 2010, 330, 1520-1523.	6.0	1,350
226	Determination of the vacuum optomechanical coupling rate using frequency noise calibration. Optics Express, 2010, 18, 23236.	1.7	137
227	Measuring nanomechanical motion with an imprecision below the standard quantum limit. Physical Review A, 2010, 82, .	1.0	131
228	Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nature Photonics, 2009, 3, 529-533.	15.6	231
229	Near-field cavity optomechanics with nanomechanical oscillators. Nature Physics, 2009, 5, 909-914.	6.5	430
230	Optical frequency comb generation from a monolithic microresonator. Nature, 2007, 450, 1214-1217.	13.7	1,686
231	Observation of strong coupling between one atom and a monolithic microresonator. Nature, 2006, 443, 671-674.	13.7	662
232	Temporal Behavior of Radiation-Pressure-Induced Vibrations of an Optical Microcavity Phonon Mode. Physical Review Letters, 2005, 94, 223902.	2.9	468
233	Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity. Physical Review Letters, 2005, 95, 033901.	2.9	634
234	Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip. Applied Physics Letters, 2004, 85, 6113-6115.	1.5	174

#	Article	IF	CITATIONS
235	Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-QToroid Microcavity. Physical Review Letters, 2004, 93, 083904.	2.9	551
236	FABRICATION, COUPLING AND NONLINEAR OPTICS OF ULTRA-HIGH-Q MICRO-SPHERE AND CHIP-BASED TOROID MICROCAVITIES. Advanced Series in Applied Physics, 2004, , 177-238.	0.0	0
237	Ultralow-threshold erbium-implanted toroidal microlaser on silicon. Applied Physics Letters, 2004, 84, 1037-1039.	1.5	158
238	Ultralow-threshold microcavity Raman laser on a microelectronic chip. Optics Letters, 2004, 29, 1224.	1.7	153
239	Fabrication and coupling to planar high-Q silica disk microcavities. Applied Physics Letters, 2003, 83, 797-799.	1.5	129
240	Modal coupling in traveling-wave resonators. Optics Letters, 2002, 27, 1669.	1.7	321