Biju Parekkadan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4027805/publications.pdf

Version: 2024-02-01

		279798	144013
75	3,974	23	57
papers	citations	h-index	g-index
79	79	79	6248
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mesenchymal Stem Cells as Therapeutics. Annual Review of Biomedical Engineering, 2010, 12, 87-117.	12.3	672
2	Mesenchymal Stem Cells: Mechanisms of Immunomodulation and Homing. Cell Transplantation, 2010, 19, 667-679.	2.5	611
3	Mesenchymal Stem Cell-Derived Molecules Reverse Fulminant Hepatic Failure. PLoS ONE, 2007, 2, e941.	2.5	462
4	Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration <i>in vitro</i> and <i>in vivo</i> . Hepatology, 2008, 47, 1634-1643.	7.3	461
5	Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells. Biochemical and Biophysical Research Communications, 2007, 363, 247-252.	2.1	224
6	Reactive Bone Marrow Stromal Cells Attenuate Systemic Inflammation via sTNFR1. Molecular Therapy, 2010, 18, 1857-1864.	8.2	144
7	Bone Marrow-Derived Mesenchymal Stem Cells Ameliorate Autoimmune Enteropathy Independently of Regulatory T Cells. Stem Cells, 2008, 26, 1913-1919.	3.2	134
8	Biomanufacturing for clinically advanced cell therapies. Nature Biomedical Engineering, 2018, 2, 362-376.	22.5	127
9	Gap junction inhibition prevents drug-induced liver toxicity and fulminant hepatic failure. Nature Biotechnology, 2012, 30, 179-183.	17.5	116
10	A comparison of adipose and bone marrow-derived mesenchymal stromal cell secreted factors in the treatment of systemic inflammation. Journal of Inflammation, 2014, 11 , 1 .	3.4	99
11	Implantable microenvironments to attract hematopoietic stem/cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19638-19643.	7.1	93
12	The human lymph node microenvironment unilaterally regulates T-cell activation and differentiation. PLoS Biology, 2018, 16, e2005046.	5.6	78
13	Long-Term Superior Performance of a Stem Cell/Hepatocyte Device for the Treatment of Acute Liver Failure. Tissue Engineering - Part A, 2009, 15, 3377-3388.	3.1	59
14	Cell–cell interaction modulates neuroectodermal specification of embryonic stem cells. Neuroscience Letters, 2008, 438, 190-195.	2.1	58
15	Bone Marrow Stromal Cell Transplants Prevent Experimental Enterocolitis and Require Host CD11b+ Splenocytes. Gastroenterology, 2011, 140, 966-975.e4.	1.3	58
16	Bioengineered Implantable Scaffolds as a Tool to Study Stromal-Derived Factors in Metastatic Cancer Models. Cancer Research, 2014, 74, 7229-7238.	0.9	56
17	Resolving cancer–stroma interfacial signalling and interventions with micropatterned tumour–stromal assays. Nature Communications, 2014, 5, 5662.	12.8	45
18	Lymph node fibroblastic reticular cell transplants show robust therapeutic efficacy in high-mortality murine sepsis. Science Translational Medicine, 2014, 6, 249ra109.	12.4	39

#	Article	IF	Citations
19	A Mesenchymal Stem Cell Potency Assay. Methods in Molecular Biology, 2010, 677, 221-231.	0.9	34
20	Enriched Protein Screening of Human Bone Marrow Mesenchymal Stromal Cell Secretions Reveals MFAP5 and PENK as Novel IL-10 Modulators. Molecular Therapy, 2014, 22, 999-1007.	8.2	33
21	Pharmacokinetics of Natural and Engineered Secreted Factors Delivered by Mesenchymal Stromal Cells. PLoS ONE, 2014, 9, e89882.	2.5	31
22	Osmotic Selection of Human Mesenchymal Stem/Progenitor Cells from Umbilical Cord Blood. Tissue Engineering, 2007, 13, 2465-2473.	4.6	29
23	Mesenchymal Stromal Cell Bioreactor for Ex Vivo Reprogramming of Human Immune Cells. Scientific Reports, 2020, 10, 10142.	3.3	24
24	Secreted Factors from Bone Marrow Stromal Cells Upregulate IL-10 and Reverse Acute Kidney Injury. Stem Cells International, 2012, 2012, 1-12.	2. 5	23
25	Aire Controls Mesenchymal Stem Cell-mediated Suppression in Chronic Colitis. Molecular Therapy, 2012, 20, 178-186.	8.2	22
26	Therapeutic Delivery Specifications Identified Through Compartmental Analysis of a Mesenchymal Stromal Cell-Immune Reaction. Scientific Reports, 2018, 8, 6816.	3. 3	18
27	Convergence of Cell Pharmacology and Drug Delivery. Stem Cells Translational Medicine, 2019, 8, 874-879.	3.3	14
28	Suicide Gene-Engineered Stromal Cells Reveal a Dynamic Regulation of Cancer Metastasis. Scientific Reports, 2016, 6, 21239.	3.3	13
29	Microcavity substrates casted from self-assembled microsphere monolayers for spheroid cell culture. Biomedical Microdevices, 2014, 16, 609-615.	2.8	12
30	Extracorporeal Stromal Cell Therapy for Subjects With Dialysis-Dependent Acute Kidney Injury. Kidney International Reports, 2018, 3, 1119-1127.	0.8	12
31	Phenotypic and functional characterization of human bone marrow stromal cells in hollow-fibre bioreactors. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 369-377.	2.7	11
32	Multiple genetically engineered humanized microenvironments in a single mouse. Biomaterials Research, 2016, 20, 19.	6.9	11
33	Mesenchymal stromal cell delivery via an ex vivo bioreactor preclinical test system attenuates clot formation for intravascular application. Stem Cells Translational Medicine, 2021, 10, 883-894.	3.3	11
34	Capture and Printing of Fixed Stromal Cell Membranes for Bioactive Display on PDMS Surfaces. Langmuir, 2013, 29, 10611-10616.	3.5	10
35	Long-adapter single-strand oligonucleotide probes for the massively multiplexed cloning of kilobase genome regions. Nature Biomedical Engineering, 2017, 1 , .	22.5	10
36	Kinetics of MSC-based enzyme therapy for immunoregulation. Journal of Translational Medicine, 2019, 17, 263.	4.4	10

#	Article	IF	CITATIONS
37	Ex vivo perfusion-based engraftment of genetically engineered cell sensors into transplantable organs. PLoS ONE, 2019, 14, e0225222.	2.5	10
38	Non-invasive cell counting of adherent, suspended and encapsulated mammalian cells using optical density. BioTechniques, 2020, 68, 35-40.	1.8	10
39	Orthogonal potency analysis of mesenchymal stromal cell function during ex vivo expansion. Experimental Cell Research, 2018, 362, 102-110.	2.6	9
40	Pharmacological Effects of Ex Vivo Mesenchymal Stem Cell Immunotherapy in Patients with Acute Kidney Injury and Underlying Systemic Inflammation. Stem Cells Translational Medicine, 2021, 10, 1588-1601.	3.3	9
41	A continuous flow cell culture system for precision cell stimulation and time-resolved profiling of cell secretion. Analytical Biochemistry, 2021, 625, 114213.	2.4	7
42	Scaffold-integrated microchips for end-to-end in vitro tumor cell attachment and xenograft formation. Technology, 2015, 03, 179-188.	1.4	6
43	Automated Assessment of Cancer Drug Efficacy On Breast Tumor Spheroids in Aggrewellâ,,¢400 Plates Using Image Cytometry. Journal of Fluorescence, 2022, 32, 521-531.	2.5	5
44	Clinical Manufacturing of Human Mesenchymal Stromal Cells using a Potency-Driven Paradigm. Current Stem Cell Reports, 2022, 8, 61-71.	1.6	5
45	Stromalized microreactor supports murine hematopoietic progenitor enrichment. Biomedical Microdevices, 2018, 20, 13.	2.8	4
46	Quantitative assessment of LASSO probe assembly and long-read multiplexed cloning. BMC Biotechnology, 2019, 19, 50.	3.3	4
47	Real-time transfer of lentiviral particles by producer cells using an engineered coculture system. Cytotechnology, 2019, 71, 1019-1031.	1.6	4
48	In Vitro Miniaturized Tuberculosis Spheroid Model. Biomedicines, 2021, 9, 1209.	3.2	4
49	Computational Simulation of Adapter Length-Dependent LASSO Probe Capture Efficiency. Biomolecules, 2019, 9, 199.	4.0	3
50	Closed loop bioreactor system for the ex vivo expansion of human T cells. Cytotherapy, 2019, 21, 76-82.	0.7	3
51	Tracking leukemic Tâ€eell transcriptional dynamics in vivo with a bloodâ€based reporter assay. FEBS Open Bio, 2020, 10, 1868-1879.	2.3	3
52	3D host cell and pathogen-based bioassay development for testing anti-tuberculosis (TB) drug response and modeling immunodeficiency. Biomolecular Concepts, 2021, 12, 117-128.	2.2	3
53	An engineered biomarker system to monitor and modulate immune clearance of cell therapies. Cytotherapy, 2017, 19, 1537-1545.	0.7	2
54	Non-invasive image-based cytometry for high throughput NK cell cytolysis analysis. Journal of Immunological Methods, 2021, 491, 112992.	1.4	2

#	Article	IF	Citations
55	Impact of Mixed Reality Presentation on STEM Engagement and Comprehension: A Pilot Study on Adult Scientists. Biomedical Engineering Education, 2021, 1, 277-290.	0.7	2
56	Artificial T Cell Mimetics to Combat Melanoma Tumor Growth. American Journal of Advanced Drug Delivery, 2018, 6, 21-32.	0.2	2
57	Massively parallel DNA target capture using long adapter single stranded oligonucleotide (LASSO) probes assembled through a novel DNA recombinase mediated methodology. Biotechnology Journal, 2021, , 2100240.	3 . 5	2
58	Assembly of Longâ€Adapter Singleâ€Strand Oligonucleotide (LASSO) Probes for Massively Parallel Capture of Kilobase Size DNA Targets. Current Protocols, 2021, 1, e278.	2.9	1
59	Image-Based Profiling of Patient-Derived Pancreatic Tumor–Stromal Cell Interactions Within a Micropatterned Tumor Model. Technology in Cancer Research and Treatment, 2018, 17, 153303381880363.	1.9	0
60	Effects of intermittent T-cell cluster disaggregation on proliferative capacity and checkpoint marker expression. Autoimmunity, 2019, 52, 102-107.	2.6	0
61	Preclinical characterisation and development of a novel myelodysplastic syndromeâ€derived cell line. British Journal of Haematology, 2021, 193, 415-419.	2.5	0
62	In Vivo Activity of Genetically Modified Cells Preseeded in Rat Vascularized Composite Allografts. Transplantation Proceedings, 2021, 53, 1751-1755.	0.6	0
63	It takes two to tango. Science Translational Medicine, 2015, 7, .	12.4	0
64	Going viral. Science Translational Medicine, 2015, 7, .	12.4	0
65	Shining a light on stem cell biology. Science Translational Medicine, 2015, 7, .	12.4	0
66	Nanoparticles, macroplanning. Science Translational Medicine, 2015, 7, .	12.4	0
67	A hop, skip, and a protein away. Science Translational Medicine, 2015, 7, .	12.4	0
68	Press pause to fast forward. Science Translational Medicine, 2015, 7, .	12.4	0
69	A wealth of cells. Science Translational Medicine, 2016, 8, .	12.4	0
70	Planting the right seeds. Science Translational Medicine, 2016, 8, .	12.4	0
71	Title is missing!. , 2019, 14, e0225222.		0
72	Title is missing!. , 2019, 14, e0225222.		0

#	Article	IF	CITATIONS
73	Title is missing!. , 2019, 14, e0225222.		O
74	Title is missing!. , 2019, 14, e0225222.		0
75	Bioactive, full-length parathyroid hormone delivered using an adeno-associated viral vector. Experimental Biology and Medicine, 2022, 247, 1885-1897.	2.4	O