Emanuela Felley-Bosco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4027437/publications.pdf

Version: 2024-02-01

94 papers 3,624 citations

32 h-index 56 g-index

102 all docs

102 docs citations

times ranked

102

4944 citing authors

#	Article	IF	CITATIONS
1	Editorial: Understanding the Interplay Between the Tumor Immune Microenvironment and Genetic Alterations in Thoracic Malignancies. Frontiers in Oncology, 2022, 12, 871544.	1.3	O
2	Hand2 delineates mesothelium progenitors and is reactivated in mesothelioma. Nature Communications, 2022, 13, 1677.	5.8	17
3	Medical and Surgical Care of Patients With Mesothelioma and Their Relatives Carrying Germline BAP1 Mutations. Journal of Thoracic Oncology, 2022, 17, 873-889.	0.5	44
4	Alterations in <i>BAP1</i> Are Associated with Cisplatin Resistance through Inhibition of Apoptosis in Malignant Pleural Mesothelioma. Clinical Cancer Research, 2021, 27, 2277-2291.	3.2	21
5	Endogenous retrovirus expression activates type-l interferon signaling in an experimental mouse model of mesothelioma development. Cancer Letters, 2021, 507, 26-38.	3.2	18
6	Double-Stranded RNA Structural Elements Holding the Key to Translational Regulation in Cancer: The Case of Editing in RNA-Binding Motif Protein 8A. Cells, 2021, 10, 3543.	1.8	5
7	Verification of a Blood-Based Targeted Proteomics Signature for Malignant Pleural Mesothelioma. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1973-1982.	1.1	6
8	RNA editing in mesothelioma: a look forward. Open Biology, 2020, 10, 200112.	1.5	4
9	Reply to: Oncolytic Viral Therapy for Malignant Pleural Mesothelioma. Journal of Thoracic Oncology, 2020, 15, e113-e116.	0.5	2
10	Functional Genomic Screen in Mesothelioma Reveals that Loss of Function of BRCA1-Associated Protein 1 Induces Chemoresistance to Ribonucleotide Reductase Inhibition. Molecular Cancer Therapeutics, 2020, 19, 552-563.	1.9	13
11	miR-625-3p and IncRNA GAS5 in Liquid Biopsies for Predicting the Outcome of Malignant Pleural Mesothelioma Patients Treated with Neo-Adjuvant Chemotherapy and Surgery. Non-coding RNA, 2019, 5, 41.	1.3	11
12	Mesothelioma: Scientific clues for prevention, diagnosis, and therapy. Ca-A Cancer Journal for Clinicians, 2019, 69, 402-429.	157.7	306
13	Editorial: Thy1/CD90 Surface Glycoprotein: Sensor of Microenvironment?. Frontiers in Cell and Developmental Biology, 2019, 7, 162.	1.8	6
14	BAP1 Missense Mutations in Cancer: Friend or Foe?. Trends in Cancer, 2019, 5, 659-662.	3.8	7
15	Hedgehog Signaling in Mesothelioma: 2019 Status. Frontiers in Genetics, 2019, 10, 1121.	1.1	2
16	Mesothelioma Driver Genes, Ferroptosis, and Therapy. Frontiers in Oncology, 2019, 9, 1318.	1.3	4
17	Progress of malignant mesothelioma research in basic science: A review of the 14th international conference of the international mesothelioma interest group (iMig2018). Lung Cancer, 2019, 127, 138-145.	0.9	11
18	How asbestos drives the tissue towards tumors: YAP activation, macrophage and mesothelial precursor recruitment, RNA editing, and somatic mutations. Oncogene, 2018, 37, 2645-2659.	2.6	53

#	Article	IF	CITATIONS
19	Desthiobiotin-Streptavidin-Affinity Mediated Purification of RNA-Interacting Proteins in Mesothelioma Cells. Journal of Visualized Experiments, 2018, , .	0.2	5
20	The "don't eat me―signal CD47 is a novel diagnostic biomarker and potential therapeutic target for diffuse malignant mesothelioma. Oncolmmunology, 2018, 7, e1373235.	2.1	38
21	Special Issue on Mechanisms of Mesothelioma Heterogeneity: Highlights and Open Questions. International Journal of Molecular Sciences, 2018, 19, 3560.	1.8	6
22	Asbestos: Modern Insights for Toxicology in the Era of Engineered Nanomaterials. Chemical Research in Toxicology, 2018, 31, 994-1008.	1.7	20
23	Rscreenorm: normalization of CRISPR and siRNA screen data for more reproducible hit selection. BMC Bioinformatics, 2018, 19, 301.	1.2	12
24	Live-Cell Mesothelioma Biobank to Explore Mechanisms of Tumor Progression. Frontiers in Oncology, 2018, 8, 40.	1.3	15
25	Non-Coding Transcript Heterogeneity in Mesothelioma: Insights from Asbestos-Exposed Mice. International Journal of Molecular Sciences, 2018, 19, 1163.	1.8	8
26	Putative cancer stem cells may be the key target to inhibit cancer cell repopulation between the intervals of chemoradiation in murine mesothelioma. BMC Cancer, 2018, 18, 471.	1.1	19
27	Gemcitabine Synergizes with Immune Checkpoint Inhibitors and Overcomes Resistance in a Preclinical Model and Mesothelioma Patients. Clinical Cancer Research, 2018, 24, 6345-6354.	3.2	43
28	A Novel BRCA1-Associated Protein-1 Isoform Affects Response of Mesothelioma Cells to Drugs Impairing BRCA1-Mediated DNA Repair. Journal of Thoracic Oncology, 2017, 12, 1309-1319.	0.5	52
29	Stem Cell Factor-Based Identification and Functional Properties of InÂVitro-Selected Subpopulations of Malignant Mesothelioma Cells. Stem Cell Reports, 2017, 8, 1005-1017.	2.3	25
30	Long Noncoding RNAs in Cancer and Therapeutic Potential. Advances in Experimental Medicine and Biology, 2017, 1008, 199-222.	0.8	234
31	Posttranscriptional Regulation Controls Calretinin Expression in Malignant Pleural Mesothelioma. Frontiers in Genetics, 2017, 8, 70.	1.1	12
32	Low Merlin expression and high Survivin labeling index are indicators for poor prognosis in patients with malignant pleural mesothelioma. Molecular Oncology, 2016, 10, 1255-1265.	2.1	32
33	Antagonizing the Hedgehog Pathway with Vismodegib Impairs Malignant Pleural Mesothelioma Growth <i>In Vivo</i> by Affecting Stroma. Molecular Cancer Therapeutics, 2016, 15, 1095-1105.	1.9	24
34	Identification of <i>cis-</i> and <i>trans</i> -acting elements regulating calretinin expression in mesothelioma cells. Oncotarget, 2016, 7, 21272-21286.	0.8	17
35	Overexpression or absence of calretinin in mouse primary mesothelial cells inversely affects proliferation and cell migration. Respiratory Research, 2015, 16, 153.	1.4	18
36	Hedgehog Signaling in Malignant Pleural Mesothelioma. Genes, 2015, 6, 500-511.	1.0	18

#	Article	IF	CITATIONS
37	Autophagy Correlates with the Therapeutic Responsiveness of Malignant Pleural Mesothelioma in 3D Models. PLoS ONE, 2015, 10, e0134825.	1.1	14
38	Expression of the Stem Cell Factor Nestin in Malignant Pleural Mesothelioma Is Associated with Poor Prognosis. PLoS ONE, 2015, 10, e0139312.	1.1	10
39	Searching for targets for the systemic therapy of mesothelioma. Annals of Oncology, 2015, 26, 1649-1660.	0.6	35
40	Inhibition of autophagy sensitizes malignant pleural mesothelioma cells to dual PI3K/mTOR inhibitors. Cell Death and Disease, 2015, 6, e1757-e1757.	2.7	43
41	Establishment of immortalized murine mesothelial cells and a novel mesothelioma cell line. In Vitro Cellular and Developmental Biology - Animal, 2015, 51, 714-721.	0.7	33
42	Prevalence of BRCA-1 associated protein 1 germline mutation in sporadic malignant pleural mesothelioma cases. Lung Cancer, 2015, 87, 77-79.	0.9	35
43	CD74: a new prognostic factor for patients with malignant pleural mesothelioma. British Journal of Cancer, 2014, 110, 2040-2046.	2.9	30
44	PI3K/mTOR Signaling in Mesothelioma Patients Treated with Induction Chemotherapy Followed by Extrapleural Pneumonectomy. Journal of Thoracic Oncology, 2014, 9, 239-247.	0.5	30
45	Whole genome RNAi screens reveal a critical role of REV3 in coping with replication stress. Molecular Oncology, 2014, 8, 1747-1759.	2.1	13
46	GAS5 long non-coding RNA in malignant pleural mesothelioma. Molecular Cancer, 2014, 13, 119.	7.9	78
47	Hippo/YAP pathway for targeted therapy. Translational Lung Cancer Research, 2014, 3, 75-83.	1.3	54
48	Identification of a seven glycopeptide signature for malignant pleural mesothelioma in human serum by selected reaction monitoring. Clinical Proteomics, 2013, 10, 16.	1.1	58
49	Role of Hedgehog Signaling in Malignant Pleural Mesothelioma. Clinical Cancer Research, 2012, 18, 4646-4656.	3.2	60
50	Starvation-induced activation of ATM/Chk2/p53 signaling sensitizes cancer cells to cisplatin. BMC Cancer, 2012, 12, 571.	1.1	104
51	Proteomic surfaceome analysis of mesothelioma. Lung Cancer, 2012, 75, 189-196.	0.9	24
52	Inhibition of phosphoinositide-3 kinase pathway down regulates ABCG2 function and sensitizes malignant pleural mesothelioma to chemotherapy. Lung Cancer, 2012, 78, 23-29.	0.9	28
53	Differential Effects of Lovastatin on Cisplatin Responses in Normal Human Mesothelial Cells versus Cancer Cells: Implication for Therapy. PLoS ONE, 2012, 7, e45354.	1.1	21
54	Inhibition of REV3 Expression Induces Persistent DNA Damage and Growth Arrest in Cancer Cells. Neoplasia, 2011, 13, 961-IN28.	2.3	58

#	Article	IF	CITATIONS
55	Bioluminescence imaging for in vivo monitoring of local recurrence mesothelioma model. Lung Cancer, 2011, 71, 370-371.	0.9	4
56	Induction of senescence markers after neo-adjuvant chemotherapy of malignant pleural mesothelioma and association with clinical outcome: An exploratory analysis. European Journal of Cancer, 2011, 47, 326-332.	1.3	58
57	Pleural mesothelioma side populations have a precursor phenotype. Carcinogenesis, 2011, 32, 1324-1332.	1.3	38
58	Malignant pleural mesothelioma. Future Oncology, 2009, 5, 391-402.	1.1	10
59	Immuno-chemotherapy reduces recurrence of malignant pleural mesothelioma: an experimental settinga^†. European Journal of Cardio-thoracic Surgery, 2009, 35, 457-462.	0.6	10
60	Functional inactivation of NF2/merlin in human mesothelioma. Lung Cancer, 2009, 64, 140-147.	0.9	139
61	Human agonistic TRAIL receptor antibodies Mapatumumab and Lexatumumab induce apoptosis in malignant mesothelioma and act synergistically with cisplatin. Molecular Cancer, 2007, 6, 66.	7.9	57
62	Src-mediated phosphorylation regulates subcellular distribution and activity of human inducible nitric oxide synthase. Oncogene, 2006, 25, 198-206.	2.6	34
63	Structural and Functional Properties of Two Human FXYD3 (Mat-8) Isoforms. Journal of Biological Chemistry, 2006, 281, 39142-39151.	1.6	25
64	Polarized distribution of inducible nitric oxide synthase regulates activity in intestinal epithelial cells. FEBS Journal, 2005, 272, 444-453.	2.2	19
65	Inducible nitric oxide synthase-dependent stimulation of PKGI and phosphorylation of VASP in human embryonic kidney cells. Biochemical Pharmacology, 2005, 69, 595-602.	2.0	16
66	La toxicologie en Suisse romande : sa situation sur le plan suisse, son organisation en réseau et ses cours de formation. Toxicologie Analytique Et Clinique, 2005, 17, 105-108.	0.1	О
67	Proteomics and chronic inflammatory bowel diseases. Pathology Research and Practice, 2004, 200, 129-133.	1.0	24
68	Postanoxic functional recovery of the developing heart is slightly altered by endogenous or exogenous nitric oxide. Molecular and Cellular Biochemistry, 2003, 252, 53-63.	1.4	5
69	Heme oxygenase-1 induction by endogenous nitric oxide: influence of intracellular glutathione. FEBS Letters, 2003, 546, 223-227.	1.3	33
70	Proteomic analysis of cytokine induced proteins in human intestinal epithelial cells: Implications for inflammatory bowel diseases. Proteomics, 2002, 2, 551-560.	1.3	111
71	Oxidative Stress in Gastric Mucosa of Asymptomatic Humans Infected with Helicobacter pylori: Effect of Bacterial Eradication. Helicobacter, 2002, 7, 342-348.	1.6	26
72	Caveolin-1-mediated post-transcriptional regulation of inducible nitric oxide synthase in human colon carcinoma cells. Biological Research, 2002, 35, 169-76.	1.5	36

#	Article	IF	CITATIONS
73	l-Tyrosine and nitric oxide synergize to prevent cytotoxic effects of superoxide. Toxicology, 2001, 165, 163-170.	2.0	3
74	Caveolin-1 down-regulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14334-14339.	3 . 3	124
7 5	Transition mutation in codon 248 of the p53 tumor suppressor gene induced by reactive oxygen species and a nitric oxide-releasing compound. Carcinogenesis, 2000, 21, 281-287.	1.3	42
76	Dominant Negative MyD88 Proteins Inhibit Interleukin- $1\hat{l}^2$ /Interferon- \hat{l}^3 -mediated Induction of Nuclear Factor \hat{l}^8 B-dependent Nitrite Production and Apoptosis in \hat{l}^2 Cells. Journal of Biological Chemistry, 2000, 275, 37672-37678.	1.6	73
77	Information transfer between large and small two-dimensional polyacrylamide gel electrophoresis. Electrophoresis, 1999, 20, 3508-3513.	1.3	9
78	The nitric oxide pathway in pig isolated calyceal smooth muscle. Neurourology and Urodynamics, 1999, 18, 673-685.	0.8	5
79	Expression of the inducible NO synthase in human monocytic U937 cells allows high output nitric oxide production. Journal of Leukocyte Biology, 1999, 65, 50-58.	1.5	46
80	Role of nitric oxide in genotoxicity: implication for carcinogenesis., 1998, 17, 25-37.		126
81	Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53 Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2442-2447.	3 . 3	413
82	Involvement of a transforming-growth-factor-β-like molecule in tumor-cell-derived inhibition of nitric-oxide synthesis in cerebral endothelial cells. International Journal of Cancer, 1995, 62, 743-748.	2.3	19
83	Nitric oxide and ethylnitrosourea: relative mutagenicity in the p53 tumor suppressor and hypoxanthine-phosphoribosyltransferase genes. Carcinogenesis, 1995, 16, 2069-2074.	1.3	41
84	Species Specificity at the Molecular Level: the Case of Nitric Oxide Synthases. Archives of Toxicology Supplement, 1995, 17, 357-366.	0.7	2
85	Constitutive expression of inducible nitric oxide synthase in human bronchial epithelial cells induces c-fos and stimulates the cGMP pathway American Journal of Respiratory Cell and Molecular Biology, 1994, 11, 159-164.	1.4	39
86	Dietary calcium restriction enhances cadmium-induced metallothionein synthesis in rats. Toxicology Letters, 1992, 60, 139-144.	0.4	15
87	Cadmium uptake and induction of metallothionein synthesis in a renal epithelial cell line (LLC-PK1). Archives of Toxicology, 1991, 65, 160-163.	1.9	12
88	A genotypic mutation system measuring mutations in restriction recognition sequences. Nucleic Acids Research, 1991, 19, 2913-2919.	6.5	62
89	A mammalian mutation system avoiding phenotypic selection: the RFLP/PCR approach. Progress in Clinical and Biological Research, 1990, 347, 187-200.	0.2	1
90	Impairment of glucose disposal by infusion of triglycerides in humans: role of glycemia. American Journal of Physiology - Endocrinology and Metabolism, 1989, 256, E747-E752.	1.8	25

#	Article	IF	CITATIONS
91	Fate of cadmium in rat renal tubules: A micropuncture study. Toxicology and Applied Pharmacology, 1989, 98, 243-251.	1.3	17
92	Fate of cadmium in rat renal tubules: A microinjection study. Toxicology and Applied Pharmacology, 1987, 91, 204-211.	1.3	41
93	Non-coding RNA regulatory networks in mesothelioma: a narrative review of their implication in innate immune signaling pathways. Precision Cancer Medicine, 0, 4, 23-23.	1.8	O
94	Thy1/CD90 Surface Glycoprotein: Sensor of the Microenvironment?. Frontiers Research Topics, 0, , .	0.2	0