Fei Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4026272/publications.pdf Version: 2024-02-01

FEI ZUAO

#	Article	IF	CITATIONS
1	Super Waterâ€Extracting Gels for Solarâ€Powered Volatile Organic Compounds Management in the Hydrological Cycle. Advanced Materials, 2022, 34, e2110548.	11.1	50
2	A Nanostructured Moistureâ€Absorbing Gel for Fast and Largeâ€Scale Passive Dehumidification. Advanced Materials, 2022, 34, e2200865.	11.1	36
3	A Nanostructured Moistureâ€Absorbing Gel for Fast and Large cale Passive Dehumidification (Adv.) Tj ETQq1	1 0.7843 11.1	14 rgBT /Ove
4	Highâ€Yield and Low ost Solar Water Purification via Hydrogelâ€Based Membrane Distillation. Advanced Functional Materials, 2021, 31, 2101036.	7.8	90
5	Solar Water Purification: Highâ€Yield and Lowâ€Cost Solar Water Purification via Hydrogelâ€Based Membrane Distillation (Adv. Funct. Mater. 19/2021). Advanced Functional Materials, 2021, 31, 2170135.	7.8	4
6	Solar Water Evaporation Toward Water Purification and Beyond. , 2021, 3, 1112-1129.		107
7	Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications. Materials Horizons, 2021, 8, 1795-1804.	6.4	176
8	Super Moisture Absorbent Gels for Sustainable Agriculture via Atmospheric Water Irrigation. , 2020, 2, 1419-1422.		82
9	Topology ontrolled Hydration of Polymer Network in Hydrogels for Solarâ€Driven Wastewater Treatment. Advanced Materials, 2020, 32, e2007012.	11.1	225
10	Atmospheric Water Harvesting: A Review of Material and Structural Designs. , 2020, 2, 671-684.		274
11	Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy and Environmental Science, 2020, 13, 2087-2095.	15.6	236
12	Materials for solar-powered water evaporation. Nature Reviews Materials, 2020, 5, 388-401.	23.3	784
13	Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. Chemical Reviews, 2020, 120, 7642-7707.	23.0	646
14	Biomassâ€Derived Hybrid Hydrogel Evaporators for Costâ€Effective Solar Water Purification. Advanced Materials, 2020, 32, e1907061.	11.1	436
15	Architecting highly hydratable polymer networks to tune the water state for solar water purification. Science Advances, 2019, 5, eaaw5484.	4.7	600
16	Synergistic Energy Nanoconfinement and Water Activation in Hydrogels for Efficient Solar Water Desalination. ACS Nano, 2019, 13, 7913-7919.	7.3	354
17	Hydrogels as an Emerging Material Platform for Solar Water Purification. Accounts of Chemical Research, 2019, 52, 3244-3253.	7.6	392
18	Tailoring Nanoscale Surface Topography of Hydrogel for Efficient Solar Vapor Generation. Nano Letters, 2019, 19, 2530-2536.	4.5	251

Fei Zhao

#	Article	IF	CITATIONS
19	Functional Hydrogels for Next-Generation Batteries and Supercapacitors. Trends in Chemistry, 2019, 1, 335-348.	4.4	158
20	Simultaneous energy harvesting and storage <i>via</i> solar-driven regenerative electrochemical cycles. Energy and Environmental Science, 2019, 12, 3370-3379.	15.6	55
21	Super Moistureâ€Absorbent Gels for Allâ€Weather Atmospheric Water Harvesting. Advanced Materials, 2019, 31, e1806446.	11.1	281
22	Electric power generation <i>via</i> asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics. Energy and Environmental Science, 2018, 11, 1730-1735.	15.6	203
23	Stretchable Allâ€Gelâ€State Fiberâ€Shaped Supercapacitors Enabled by Macromolecularly Interconnected 3D Graphene/Nanostructured Conductive Polymer Hydrogels. Advanced Materials, 2018, 30, e1800124.	11.1	396
24	Titelbild: A 3D Nanostructured Hydrogelâ€Frameworkâ€Derived Highâ€Performance Composite Polymer Lithiumâ€Ion Electrolyte (Angew. Chem. 8/2018). Angewandte Chemie, 2018, 130, 2025-2025.	1.6	1
25	A 3D Nanostructured Hydrogelâ€Frameworkâ€Derived Highâ€Performance Composite Polymer Lithiumâ€Ion Electrolyte. Angewandte Chemie - International Edition, 2018, 57, 2096-2100.	7.2	484
26	Cyanogel-Enabled Homogeneous Sb–Ni–C Ternary Framework Electrodes for Enhanced Sodium Storage. ACS Nano, 2018, 12, 759-767.	7.3	72
27	A 3D Nanostructured Hydrogelâ€Frameworkâ€Derived Highâ€Performance Composite Polymer Lithiumâ€ŀon Electrolyte. Angewandte Chemie, 2018, 130, 2118-2122.	1.6	34
28	Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature Nanotechnology, 2018, 13, 489-495.	15.6	1,356
29	Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Materials, 2018, 15, 46-52.	9.5	203
30	Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy and Environmental Science, 2018, 11, 2839-2845.	15.6	144
31	Nanostructured Functional Hydrogels as an Emerging Platform for Advanced Energy Technologies. Advanced Materials, 2018, 30, e1801796.	11.1	177
32	A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy and Environmental Science, 2018, 11, 1985-1992.	15.6	654
33	Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications. Accounts of Chemical Research, 2017, 50, 1734-1743.	7.6	343