Andrea Chini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/402461/publications.pdf

Version: 2024-02-01

34 papers 6,518 citations

236925 25 h-index 377865 34 g-index

35 all docs

35 docs citations

35 times ranked

5928 citing authors

#	Article	IF	CITATIONS
1	The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 2007, 448, 666-671.	27.8	1,974
2	The <i>Arabidopsis</i> bhlh Transcription Factors MYC3 and MYC4 Are Targets of JAZ Repressors and Act Additively with MYC2 in the Activation of Jasmonate Responses Â. Plant Cell, 2011, 23, 701-715.	6.6	906
3	(+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nature Chemical Biology, 2009, 5, 344-350.	8.0	822
4	Redundancy and specificity in jasmonate signalling. Current Opinion in Plant Biology, 2016, 33, 147-156.	7.1	295
5	The ZIM domain mediates homo―and heteromeric interactions between Arabidopsis JAZ proteins. Plant Journal, 2009, 59, 77-87.	5.7	257
6	Drought tolerance established by enhanced expression of the CC-NBS-LRRgene, ADR1, requires salicylic acid, EDS1 and ABI1. Plant Journal, 2004, 38, 810-822.	5.7	253
7	JAZ repressors set the rhythm in jasmonate signaling. Current Opinion in Plant Biology, 2008, 11, 486-494.	7.1	224
8	The Bacterial Effector HopX1 Targets JAZ Transcriptional Repressors to Activate Jasmonate Signaling and Promote Infection in Arabidopsis. PLoS Biology, 2014, 12, e1001792.	5.6	223
9	An OPR3-independent pathway uses 4,5-didehydrojasmonate for jasmonate synthesis. Nature Chemical Biology, 2018, 14, 171-178.	8.0	183
10	Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acidâ€signalling module. FEBS Journal, 2009, 276, 4682-4692.	4.7	181
11	Repression of Jasmonate-Dependent Defenses by Shade Involves Differential Regulation of Protein Stability of MYC Transcription Factors and Their JAZ Repressors in <i>Arabidopsis</i> Plant Cell, 2014, 26, 1967-1980.	6.6	152
12	Targeted Activation Tagging of the Arabidopsis NBS-LRR gene, ADR1, Conveys Resistance to Virulent Pathogens. Molecular Plant-Microbe Interactions, 2003, 16, 669-680.	2.6	140
13	<scp>JAZ</scp> 2 controls stomata dynamics during bacterial invasion. New Phytologist, 2017, 213, 1378-1392.	7. 3	124
14	Identification of TIFY/JAZ family genes in Solanum lycopersicum and their regulation in response to abiotic stresses. PLoS ONE, 2017, 12, e0177381.	2.5	79
15	Rational design of a ligand-based antagonist of jasmonate perception. Nature Chemical Biology, 2014, 10, 671-676.	8.0	74
16	An Ancient COI1-Independent Function for Reactive Electrophilic Oxylipins in Thermotolerance. Current Biology, 2020, 30, 962-971.e3.	3.9	68
17	ADS1 encodes a MATE-transporter that negatively regulates plant disease resistance. New Phytologist, 2011, 192, 471-482.	7.3	62
18	Activation tagging in plants: a tool for gene discovery. Functional and Integrative Genomics, 2004, 4, 258-66.	3.5	59

#	Article	IF	CITATIONS
19	How Microbes Twist Jasmonate Signaling around Their Little Fingers. Plants, 2016, 5, 9.	3.5	58
20	Characterization of wheat (Triticum aestivum) TIFY family and role of Triticum Durum TdTIFY11a in salt stress tolerance. PLoS ONE, 2018, 13, e0200566.	2.5	53
21	Characterization of a Novel, Defense-Related Arabidopsis Mutant, cir1, Isolated By Luciferase Imaging. Molecular Plant-Microbe Interactions, 2002, 15, 557-566.	2.6	49
22	A rationally designed JAZ subtype-selective agonist of jasmonate perception. Nature Communications, 2018, 9, 3654.	12.8	47
23	The fungal phytotoxin lasiojasmonate A activates the plant jasmonic acid pathway. Journal of Experimental Botany, 2018, 69, 3095-3102.	4.8	41
24	Molecular locks and keys: the role of small molecules in phytohormone research. Frontiers in Plant Science, 2014, 5, 709.	3.6	35
25	An auxin controls bacterial antibiotics production. Nucleic Acids Research, 2018, 46, 11229-11238.	14.5	27
26	Motifs specific for the ADR1 NBS–LRR protein family in Arabidopsis are conserved among NBS–LRR sequences from both dicotyledonous and monocotyledonous plants. Planta, 2005, 221, 597-601.	3.2	21
27	Fungal Production and Manipulation of Plant Hormones. Current Medicinal Chemistry, 2018, 25, 253-267.	2.4	21
28	Application of Yeast-Two Hybrid Assay to Chemical Genomic Screens: A High-Throughput System to Identify Novel Molecules Modulating Plant Hormone Receptor Complexes. Methods in Molecular Biology, 2014, 1056, 35-43.	0.9	19
29	Carrot cells contain two top1 genes having the coding capacity for two distinct DNA topoisomerases I1. Journal of Experimental Botany, 2000, 51, 1979-1990.	4.8	17
30	Discovery of inhibitors of <scp><i>Pseudomonas aeruginosa</i></scp> virulence through the search for naturalâ€ike compounds with a dual role as inducers and substrates of efflux pumps. Environmental Microbiology, 2021, 23, 7396-7411.	3.8	16
31	A small molecule antagonizes jasmonic acid perception and auxin responses in vascular and nonvascular plants. Plant Physiology, 2021, 187, 1399-1413.	4.8	13
32	Genome wide identification of wheat and Brachypodium type one protein phosphatases and functional characterization of durum wheat TdPP1a. PLoS ONE, 2018, 13, e0191272.	2.5	12
33	Synthesis and mode of action studies of N -[(-)-jasmonyl]- S -tyrosin and ester seiridin jasmonate. Phytochemistry, 2018, 147, 132-139.	2.9	6
34	Application of Chemical Genomics to Plant–Bacteria Communication: A High-Throughput System to Identify Novel Molecules Modulating the Induction of Bacterial Virulence Genes by Plant Signals. Methods in Molecular Biology, 2017, 1610, 297-314.	0.9	5