Kunio Yubuta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4024438/publications.pdf

Version: 2024-02-01

300 papers

7,354 citations

66343 42 h-index 70 g-index

308 all docs 308 docs citations

times ranked

308

6839 citing authors

#	Article	IF	CITATIONS
1	Critical Behavior of the Magnetization in Heusler Alloy Coâ,,TiGaâ,€.â,^Snâ,€.â,,. IEEE Transactions on Magnetics, 2022, 58, 1-4.	2.1	0
2	Redetermination of the crystal structures of rare-earth trirhodium diboride <i>RE</i> Rh ₃ B ₂ (<i>RE</i> = Pr, Nd and Sm) from single-crystal X-ray data. Acta Crystallographica Section E: Crystallographic Communications, 2022, 78, 76-79.	0.5	2
3	Detoxifying SARS-CoV-2 antiviral drugs from model and real wastewaters by industrial waste-derived multiphase photocatalysts. Journal of Hazardous Materials, 2022, 429, 128300.	12.4	16
4	Elucidating the enhanced photoelectrochemical performance of zinc-blende ZnS/wurtzite ZnO heterojunction and adsorption of water molecules by molecular dynamics simulations. Materials Science in Semiconductor Processing, 2022, 142, 106494.	4.0	8
5	Eliciting the contribution of TiN to photoelectrochemical performance enhancement of Imma-LaTiO2N at neutral pH. Materials Today Energy, 2022, 27, 101053.	4.7	5
6	HPT production of large bulk skutterudites. Journal of Alloys and Compounds, 2021, 854, 156678.	5 . 5	12
7	Influence of shear strain on HPT-processed n-type skutterudites yielding ZT=2.1. Journal of Alloys and Compounds, 2021, 855, 157409.	5.5	17
8	Spinifexâ€like textured metaperidotites from the Higo Metamorphic Rocks, Japan, a possible highâ€pressure dehydration product of antigorite serpentinite. Island Arc, 2021, 30, e12382.	1.1	2
9	Demonstration of ultrahigh thermoelectric efficiency of $\hat{a}^{-1}/47.3\%$ in Mg3Sb2/MgAgSb module for low-temperature energy harvesting. Joule, 2021, 5, 1196-1208.	24.0	205
10	Incommensurately modulated crystal structure of α′Â(O′3)-type sodium cobalt oxide Na _{<i>x</i>} CoO ₂ (<i>x</i> â^¼ 0.78). Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2021, 77, 371-377.	1.1	0
11	Nb6Mn1 \hat{a} e"xlr6+xB8 (x = 0.25): A Ferrimagnetic Boride Containing Planar B6 Rings Interacting with Ferromagnetic Mn Chains. Journal of Physical Chemistry C, 2021, 125, 13635-13640.	3.1	1
12	Electronic structure of a borophene layer in rare-earth aluminum/chromium boride and its hydrogenated derivative borophane. Physical Review Materials, 2021, 5, .	2.4	13
13	Time-Retrenched Synthesis of BaTaO ₂ N by Localizing an NH ₃ Delivery System for Visible-Light-Driven Photoelectrochemical Water Oxidation at Neutral pH: Solid-State Reaction or Flux Method?. ACS Applied Energy Materials, 2021, 4, 9315-9327.	5.1	11
14	Local structure investigations of Sn and Mn doped in \hat{l}^2 -Ga2O3 by X-ray absorption spectroscopy. Journal of Crystal Growth, 2021, 570, 126223.	1.5	6
15	Structure and properties of nanoporous FePt fabricated by dealloying a melt-spun Fe60Pt20B20 alloy and subsequent annealing. Journal of Materials Science and Technology, 2020, 36, 128-133.	10.7	20
16	Ordering kinetics of nanoporous FeCo during liquid metal dealloying and the development of nanofacets. Scripta Materialia, 2020, 177, 38-43.	5.2	15
17	Optimization of the structure and soft magnetic properties of a Fe87B13 nanocrystalline alloy by additions of Cu and Nb. Journal of Magnetism and Magnetic Materials, 2020, 497, 166001.	2.3	13
18	Nanostructured core–shell metal borides–oxides as highly efficient electrocatalysts for photoelectrochemical water oxidation. Nanoscale, 2020, 12, 3121-3128.	5.6	29

#	Article	IF	Citations
19	Fabrication of Single-Crystalline BaTaO ₂ N from Chloride Fluxes for Photocatalytic H ₂ Evolution under Visible Light. Crystal Growth and Design, 2020, 20, 255-261.	3.0	32
20	Prismatic Ta ₃ N ₅ -composed spheres produced by self-sacrificial template-like conversion of Ta particles <i>via</i> Na ₂ CO ₃ flux. CrystEngComm, 2020, 22, 5122-5129.	2.6	2
21	Growth of dispersed hydroxyapatite crystals highly intertwined with TEMPO-oxidized cellulose nanofiber. CrystEngComm, 2020, 22, 4933-4941.	2.6	4
22	Platy BaTaO ₂ N Crystals Fabricated from K ₂ CO ₃ –KCl Binary Flux for Photocatalytic H ₂ Evolution. ACS Applied Energy Materials, 2020, 3, 10669-10675.	5.1	15
23	Flux Growth of Single-Crystalline Hollandite-Type Potassium Ferrotitanate Microrods From KCl Flux. Frontiers in Chemistry, 2020, 8, 714.	3.6	3
24	Nanostructure with diffuse streaks in ScRh3B0.6 compound studied by electron microscopy. Solid State Sciences, 2020, 102, 106177.	3.2	1
25	Topological Dirac nodal loops in nonsymmorphic hydrogenated monolayer boron. Physical Review B, 2020, 101, .	3.2	19
26	Fabrication of plate-like Ta ₃ N ₅ crystals through evaporation–deposition–re-evaporation of alkali halide fluxes onto tantalum substrates. CrystEngComm, 2020, 22, 5723-5730.	2.6	0
27	Effective photocatalytic removal of selected pharmaceuticals and personal care products by elsmoreite/tungsten oxide@ZnS photocatalyst. Journal of Environmental Management, 2020, 270, 110870.	7.8	24
28	SnO2@ZnS photocatalyst with enhanced photocatalytic activity for the degradation of selected pharmaceuticals and personal care products in model wastewater. Journal of Alloys and Compounds, 2020, 827, 154339.	5 . 5	64
29	Novel g ₃ N ₄ nanosheets/CDs/BiOCl photocatalysts with exceptional activity under visible light. Journal of the American Ceramic Society, 2019, 102, 1435-1453.	3.8	81
30	Alkali Metal Chloride Flux Growth of Ilmenite-Type ZnTiO ₃ and Subsequent Nitrogen Doping for Visible-Light-Driven Water Oxidation Catalysis. ACS Applied Energy Materials, 2019, 2, 7762-7771.	5.1	10
31	Crystal Growth and some Properties of Tm(Al _{1-x} Mo _x)B ₄ Synthesized by Al-Flux. Solid State Phenomena, 2019, 289, 65-70.	0.3	1
32	High-ZT half-Heusler thermoelectrics, Ti0.5Zr0.5NiSn and Ti0.5Zr0.5NiSn0.98Sb0.02: Physical properties at low temperatures. Acta Materialia, 2019, 166, 466-483.	7.9	31
33	Crystal Growth and Physical Properties of Lu(Al _{1-x} <i>T</i> _x)B ₄ (<i>T</i> = Fe, Cr) by Al-Self Flux. Solid State Phenomena, 2019, 289, 120-126.	0.3	3
34	A trial for distinguish of Mn3+ and Mn4+ ions in LiMn2O4 by anomalous powder x-ray diffraction with focused beam flat sample method. AIP Conference Proceedings, 2019, , .	0.4	1
35	Synergistic effect of g-C3N4, Ni(OH)2 and halloysite in nanocomposite photocatalyst on efficient photocatalytic hydrogen generation. Renewable Energy, 2019, 138, 434-444.	8.9	40
36	Critically Percolated States in High-Entropy Alloys with Exact Equi-Atomicity. Materials Transactions, 2019, 60, 330-337.	1.2	11

#	Article	IF	CITATIONS
37	Scintillation properties of Y-Admixed Gd2Si2O7 scintillator. Radiation Measurements, 2019, 126, 106123.	1.4	1
38	Growth of Millimeter-sized Platy Single Crystals of NaTaO ₃ from Na ₂ MoO ₄ Flux. Crystal Growth and Design, 2019, 19, 3607-3611.	3.0	6
39	Septenary Zr–Hf–Ti–Al–Co–Ni–Cu high-entropy bulk metallic glasses with centimeter-scale glass-forming ability. Materialia, 2019, 7, 100372.	2.7	32
40	Construction of Spatial Charge Separation Facets on BaTaO ₂ N Crystals by Flux Growth Approach for Visible-Light-Driven H ₂ Production. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22264-22271.	8.0	51
41	Sustainable and simple processing technique for n-type skutterudites with high ZT and their analysis. Acta Materialia, 2019, 173, 9-19.	7.9	22
42	Oxygen-rich TiO2 decorated with C-Dots: Highly efficient visible-light-responsive photocatalysts in degradations of different contaminants. Advanced Powder Technology, 2019, 30, 1183-1196.	4.1	39
43	ZnS-containing industrial waste: Antibacterial activity and effects of thermal treatment temperature and atmosphere on photocatalytic activity. Journal of Alloys and Compounds, 2019, 791, 971-982.	5. 5	15
44	Abundant Vanadium Diboride with Graphene-like Boron layers for Hydrogen Evolution. ACS Applied Energy Materials, 2019, 2, 176-181.	5.1	35
45	Facet effect on the photoelectrochemical performance of a WO3/BiVO4 heterojunction photoanode. Applied Catalysis B: Environmental, 2019, 245, 227-239.	20.2	141
46	Nanoporous L10-FePt with high coercivity. Scripta Materialia, 2019, 162, 5-8.	5.2	0
47	Fabrication of TiO2/CoMoO4/PANI nanocomposites with enhanced photocatalytic performances for removal of organic and inorganic pollutants under visible light. Materials Chemistry and Physics, 2019, 224, 10-21.	4.0	63
48	Amorphous Fe2O3 nanoparticles embedded into hypercrosslinked porous polymeric matrix for designing an easily separable and recyclable photocatalytic system. Applied Surface Science, 2019, 466, 837-846.	6.1	24
49	Syntheses and Properties of Yb(Al _{<math>1\hat{a}^*xTx)B_{$4<(i>T= Cr,) Tj ET Metallurgy, 2019, 66, 525-529.$}</math>}	Qq1 1 0.7 0.2	84314 rgBT 2
50	A Simple, General Synthetic Route toward Nanoscale Transition Metal Borides. Advanced Materials, 2018, 30, e1704181.	21.0	101
51	Thin and Dense Solid-solid Heterojunction Formation Promoted by Crystal Growth in Flux on a Substrate. Scientific Reports, 2018, 8, 96.	3.3	3
52	Pressure effect on the magnetic properties of the half-metallic Heusler alloy <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Co</mml:mi><mml:physical .<="" 2018,="" 97,="" b,="" review="" td=""><td>mn32<td>nl:מממ:</td></td></mml:physical></mml:msub></mml:mrow></mml:math>	mn 32 <td>nl:מממ:</td>	nl:מ מ מ:
53	Partially-devitrified icosahedral quasicrystalline phase in Ti33.33Zr33.33Hf13.33Ni20 and Zr30Hf30Ni15Cu10Ti15 amorphous alloys with near equi-atomic compositions. Materials Chemistry and Physics, 2018, 210, 245-250.	4.0	7
54	Synthesis and visible-light-induced sacrificial photocatalytic water oxidation of quinary oxynitride BaNb0.5Ta0.5O2N crystals. Journal of Energy Chemistry, 2018, 27, 1415-1421.	12.9	18

#	Article	IF	CITATIONS
55	Growth of {100}-faceted NaFeTiO ₄ crystals with a tunable aspect ratio from a NaCl–Na ₂ SO ₄ binary flux. CrystEngComm, 2018, 20, 873-878.	2.6	7
56	Temperature dependence of differential conductance in Co-based Heusler alloy Co2TiSn and superconductor Pb junctions. Physica B: Condensed Matter, 2018, 536, 289-292.	2.7	3
57	One-Dimensional Growth of Li ₂ NiPO ₄ F Single Crystals from Intermediate LiNiPO ₄ Crystal Surface Using KCl–KI Fluxes. Crystal Growth and Design, 2018, 18, 6777-6785.	3.0	11
58	Nanoporous magnesium. Nano Research, 2018, 11, 6428-6435.	10.4	46
59	Flux-Mediated Topochemical Growth of Platelet-Shaped Perovskite LiNbO ₃ Single Crystals from Layered Potassium Niobate Crystals. Crystal Growth and Design, 2018, 18, 4111-4116.	3.0	3
60	Temperature-dependent local atomic structures in the traditional Fe65Ni35Invar alloy by X-ray fluorescence holography. Surface and Interface Analysis, 2018, 50, 790-794.	1.8	9
61	Binary flux-promoted formation of trigonal ZnIn ₂ S ₄ layered crystals using ZnS-containing industrial waste and their photocatalytic performance for H ₂ production. Green Chemistry, 2018, 20, 3845-3856.	9.0	38
62	Chloride Flux Growth of Idiomorphic $\langle i \rangle A \langle i \rangle WO \langle sub \rangle 4 \langle sub \rangle$ ($\langle i \rangle A \langle i \rangle = Sr$, Ba) Single Microcrystals. Crystal Growth and Design, 2018, 18, 5301-5310.	3.0	8
63	Reduced graphene oxide-modified Bi2WO6/BiOI composite for the effective photocatalytic removal of organic pollutants and molecular modeling of adsorption. Journal of Molecular Liquids, 2018, 268, 715-727.	4.9	34
64	Integration of carbon dots and polyaniline with TiO2 nanoparticles: Substantially enhanced photocatalytic activity to removal various pollutants under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 94-104.	3.9	76
65	Effects of Alkali Cations and Sulfate/Chloride Anions on the Flux Growth of {001}-Faceted β-Li ₂ TiO ₃ Crystals. Crystal Growth and Design, 2017, 17, 1118-1124.	3.0	17
66	Application of Flux Method to the Fabrication of Ba ₅ Ta ₄ O ₁₅ , Sr ₅ Ta ₄ O ₇ , and BaTaO ₂ N Polycrystalline Films on Ta Substrates. Crystal Growth and Design, 2017, 17, 1583-1588.	3.0	21
67	Fabrication and electrocatalytic properties of ferromagnetic nanoporous PtFe by dealloying an amorphous Fe 60 Pt 10 B 30 alloy. Journal of Alloys and Compounds, 2017, 706, 215-219.	5.5	16
68	Understanding the effect of partial N3â ⁻ '-to-O2â ⁻ ' substitution and H+-to-K+ exchange on photocatalytic water reduction activity of Ruddlesden–Popper layered perovskite KLaTiO4. Molecular Catalysis, 2017, 432, 250-258.	2.0	22
69	Perovskite $Srla^*$ x Ba x Wla^* y Ta y (O,N)3: synthesis by thermal ammonolysis and photocatalytic oxygen evolution under visible light. Materials for Renewable and Sustainable Energy, 2017, 6, 1.	3.6	11
70	NH ₃ -assisted chloride flux-coating method for direct fabrication of visible-light-responsive SrNbO ₂ N crystal layers. CrystEngComm, 2017, 19, 5532-5541.	2.6	25
71	Engaging the flux-grown La1â^'Sr Fe1â^'Ti O3 crystals in visible-light-driven photocatalytic hydrogen generation. International Journal of Hydrogen Energy, 2017, 42, 27024-27033.	7.1	14
72	Multiple-wavelength neutron holography with pulsed neutrons. Science Advances, 2017, 3, e1700294.	10.3	22

#	Article	IF	CITATIONS
73	Elucidating the impact of A-site cation change on photocatalytic $H < sub > 2 < / sub > and O < sub > 2 < / sub > evolution activities of perovskite-type LnTaON < sub > 2 < / sub > (Ln = La and Pr). Physical Chemistry Chemical Physics, 2017, 19, 22210-22220.$	2.8	44
74	Thermal conductivity of PrRh4.8B2, a layered boride compound. APL Materials, 2017, 5, 126103.	5.1	28
75	Protonated Oxide, Nitrided, and Reoxidized K ₂ La ₂ Lalight-Induced Photocatalytic Water Oxidation and Fabrication of Their Nanosheets. ACS Sustainable Chemistry and Engineering, 2017, 5, 232-240.	6.7	34
76	Magnetization and Spin Polarization of Heusler Alloys Co $_{2}$ TiSn and Co $_{2}$ TiGa $_{0.5}$ Sn $_{0.5}$. IEEE Magnetics Letters, 2017, 8, 1-4.	1.1	4
77	Crystal Structure and Thermoelectric Properties of Lightly Vanadium-Substituted Higher Manganese	2.2	28
78	Thermal deformation effects on thermoelectric properties for Bi0.82Sb0.18 alloys. Journal of Alloys and Compounds, 2017, 692, 563-568.	5.5	6
79	Unexpected Trend Deviation in Isoelectronic Transition Metal Borides <i>A</i> ₃ <i>T</i> ₅ B ₂ (<i>A</i> = group 4, <i>T</i> = group 9): Ti ₃ Co ₅ B ₂ â€vs. Perovskiteâ€Type Studied by Experiments and DFT Calculations. Zeitschrift Fur Anorganische Und Allgemeine Chemie. 2017. 643. 1551-1556.	1.2	7
80	The cross-substitution effect of tantalum on the visible-light-driven water oxidation activity of BaNbO ₂ N crystals grown directly by an NH ₃ -assisted flux method. Journal of Materials Chemistry A, 2016, 4, 12807-12817.	10.3	50
81	High-Entropy Alloys Including 3d, 4d and 5d Transition Metals from the Same Group in the Periodic Table. Materials Transactions, 2016, 57, 1197-1201.	1.2	7
82	Molybdate flux growth of idiomorphic Li(Ni $<$ sub $>1/3<$ sub $>1/3$	10.3	76
83	Evolution of a bicontinuous nanostructure via a solid-state interfacial dealloying reaction. Scripta Materialia, 2016, 118, 33-36.	5.2	46
84	Two-step synthesis and visible-light-driven photocatalytic water oxidation activity of AW(O,N)3 (A= Sr,) Tj ETQq(00.2gBT	/Oyerlock 10
85	Exceptional Flux Growth and Chemical Transformation of Metastable Orthorhombic LiMnO2 Cuboids into Hierarchically-Structured Porous H1.6Mn1.6O4 Rods as Li Ion Sieves. Crystal Growth and Design, 2016, 16, 6178-6185.	3.0	17
86	Facile growth of centimeter-order, highly crystalline ZnWO ₄ single crystals by the flux evaporation technique using molten NaCl. CrystEngComm, 2016, 18, 8608-8613.	2.6	4
87	The contrasting effect of the Ta/Nb ratio in (111)-layered B-site deficient hexagonal perovskite Ba ₅ Nb _{4â^²x} Ta _x O ₁₅ crystals on visible-light-induced photocatalytic water oxidation activity of their oxynitride derivatives. Dalton Transactions, 2016, 45, 12559-12568.	3.3	24
88	Elastic Properties of As-Solidified Ti-Zr Binary Alloys for Biomedical Applications. Materials Transactions, 2016, 57, 1986-1992.	1.2	23
89	Facile Morphological Modification of Ba ₅ Nb ₄ O ₁₅ Crystals Using Chloride Flux and in Situ Growth Investigation. Crystal Growth and Design, 2016, 16, 3954-3960.	3.0	16
90	Flux-Boosted Sulfide Crystal Growth: Growth of CuInS ₂ Crystals by NaCl–InCl ₃ Evaporation. Crystal Growth and Design, 2016, 16, 1195-1199.	3.0	8

#	Article	IF	CITATIONS
91	The crystal structures of m,o-Ce 3 Pt 4 Sn 6 and Ce 1â^'x Pt 6 Al 13+2x. Solid State Sciences, 2016, 55, 48-57.	3.2	3
92	New Dion–Jacobson Phase Three-Layer Perovskite CsBa ₂ Ta ₃ O ₁₀ and Its Conversion to Nitrided Ba ₂ Ta ₃ O ₁₀ Nanosheets via a Nitridation–Protonation–Intercalation–Exfoliation Route for Water Splitting. Crystal Growth and Design, 2016, 16, 2302-2308.	3.0	47
93	Three-dimensional bicontinuous porous graphite generated in low temperature metallic liquid. Carbon, 2016, 96, 403-410.	10.3	56
94	Amount of tungsten dopant influencing the photocatalytic water oxidation activity of LaTiO ₂ N crystals grown directly by an NH ₃ -assisted flux method. Catalysis Science and Technology, 2016, 6, 5389-5396.	4.1	25
95	Dual HCP structures formed in senary ScYLaTiZrHf multi-principal-element alloy. Intermetallics, 2016, 69, 103-109.	3.9	46
96	KCl flux-induced growth of isometric crystals of cadmium-containing early transition-metal (Ti 4+ ,) Tj ETQq0 0 0 atmosphere for water splitting application. Applied Catalysis B: Environmental, 2016, 182, 626-635.	rgBT /Ove 20.2	erlock 10 Tf 50 30
97	Ordered Arrangement of Co and Ni Atoms of an Al-Co-Ni Crystalline Approximant by Atomic-resolution Energy-dispersive X-ray Spectroscopy. Materia Japan, 2016, 55, 605-605.	0.1	0
98	Crystal Structure Analysis of an Al-Co-Ni Crystalline Approximant by Cs-corrected Scanning Transmission Electron Microscopy. Materia Japan, 2016, 55, 606-606.	0.1	0
99	Luminescence properties of Pr-doped (La,Gd) ₂ Si ₂ O ₇ grown by the floating zone method. Japanese Journal of Applied Physics, 2015, 54, 052401.	1.5	7
100	Chloride Flux Growth of La ₂ TiO ₅ Crystals and Nontopotactic Solid-State Transformation to LaTiO ₂ N Crystals by Nitridation Using NH ₃ . Crystal Growth and Design, 2015, 15, 333-339.	3.0	46
101	Chloride Flux Growth of La ₂ Ti ₂ O ₇ Crystals and Subsequent Nitridation To Form LaTiO ₂ N Crystals. Crystal Growth and Design, 2015, 15, 124-128.	3.0	27
102	Luminescence study on Eu or Tb doped lanthanum–gadolinium pyrosilicate crystal. Optical Materials, 2015, 41, 80-83.	3.6	2
103	Scintillation properties of a La, Lu-admix gadolinium pyrosilicate crystal. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 784, 115-118.	1.6	3
104	Scintillation properties of Ce:(La,Gd)2Si2O7 at high temperatures. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 772, 72-75.	1.6	28
105	NH ₃ -Assisted Flux Growth of Cube-like BaTaO ₂ N Submicron Crystals in a Completely Ionized Nonaqueous High-Temperature Solution and Their Water Splitting Activity. Crystal Growth and Design, 2015, 15, 4663-4671.	3.0	95
106	NH ₃ -Assisted Flux-Mediated Direct Growth of LaTiO ₂ N Crystallites for Visible-Light-Induced Water Splitting. Journal of Physical Chemistry C, 2015, 119, 15896-15904.	3.1	55
107	The structure of an Al–Rh–Cu decagonal quasicrystal studied by spherical aberration (Cs)-corrected scanning transmission electron microscopy. Philosophical Magazine, 2015, 95, 1524-1535.	1.6	10
108	In-doped multifilled n-type skutterudites with ZT= 1.8. Acta Materialia, 2015, 95, 201-211.	7.9	146

#	Article	IF	CITATIONS
109	Alloy design for high-entropy alloys based on Pettifor map for binary compounds with 1:1 stoichiometry. Intermetallics, 2015, 66, 56-66.	3.9	17
110	Optimizing niobium dealloying with metallic melt to fabricate porous structure for electrolytic capacitors. Acta Materialia, 2015, 84, 497-505.	7.9	72
111	Low-temperature growth of idiomorphic cubic-phase Li ₇ La ₃ Zr ₂ O ₁₂ crystals using LiOH flux. CrystEngComm, 2015, 17, 3487-3492.	2.6	6
112	Fabrication of La ₂ Ti ₂ O ₇ Crystals Using an Alkali-Metal Molybdate Flux Growth Method and Their Nitridability To Form LaTiO ₂ N Crystals under a High-Temperature NH ₃ Atmosphere. Inorganic Chemistry, 2015, 54, 3237-3244.	4.0	41
113	Epitaxial growth of orthorhombic NaTaO ₃ crystals on SrTiO ₃ (100) surface by flux coating. CrystEngComm, 2015, 17, 9016-9019.	2.6	12
114	Unique Growth Manner of Li ₅ La ₃ Ta ₂ O ₁₂ Crystals from Lithium Hydroxide Flux at Low Temperature. Crystal Growth and Design, 2015, 15, 4863-4868.	3.0	10
115	Flux growth of hexagonal cylindrical LiCoO ₂ crystals surrounded by Li-ion conducting preferential facets and their electrochemical properties studied by single-particle measurements. Journal of Materials Chemistry A, 2015, 3, 17016-17021.	10.3	20
116	Syntheses of new rare-earth rhodium borocarbides. Pacific Science Review, 2014, 16, 45-48.	0.3	0
117	High-Entropy Alloys with a Hexagonal Close-Packed Structure Designed by Equi-Atomic Alloy Strategy and Binary Phase Diagrams. Jom, 2014, 66, 1984-1992.	1.9	275
118	Structure of an Al-Fe-Ni Decagonal Quasicrystal Studied by Cs-Corrected STEM. Acta Physica Polonica A, 2014, 126, 637-640.	0.5	5
119	F-AlCoPdGe Alloy with Three Types of Pseudo-Mackay Clusters. Acta Physica Polonica A, 2014, 126, 588-593.	0.5	11
120	Structure of helical Nb ₂ O ₅ nanotubes studied by transmission electron microscopy. Surface and Interface Analysis, 2014, 46, 957-960.	1.8	2
121	Crystal structure and Ce valence variation in the solid solution CeRh _{3 â°' x} Pd _x B _{0.5} . Materials Research Express, 2014, 1, 016101.	1.6	7
122	High-temperature elastic anisotropy of B2-type FeAl. Scripta Materialia, 2014, 82, 37-40.	5.2	6
123	Structure of a crystalline approximant related to Al–Co–Ni decagonal quasicrystals studied by spherical aberration (<i>C</i> s)-corrected scanning transmission electron microscopy and atomic-resolution energy dispersive X-ray spectroscopy. Philosophical Magazine Letters, 2014, 94, 539-547.	1.2	9
124	Thermal conductivity of layered borides: The effect of building defects on the thermal conductivity of TmAlB4 and the anisotropic thermal conductivity of AlB2. APL Materials, 2014, 2, .	5.1	32
125	Direct Fabrication of Densely Packed Idiomorphic Li ₄ Ti ₅ O ₁₂ Crystal Layers on Substrates by Using a LiCl–NaCl Mixed Flux and Their Additive-Free Electrode Characteristics. Crystal Growth and Design, 2014, 14, 5634-5639.	3.0	10
126	Low-temperature growth of spinel-type Li _{1+x} Mn _{2â^'x} O ₄ crystals using a LiClâ€"KCl flux and their performance as a positive active material in lithium-ion rechargeable batteries. CrystEngComm, 2014, 16, 1157-1162.	2.6	13

#	Article	IF	Citations
127	Bulk-Nanoporous-Silicon Negative Electrode with Extremely High Cyclability for Lithium-Ion Batteries Prepared Using a Top-Down Process. Nano Letters, 2014, 14, 4505-4510.	9.1	208
128	Fabrication of LiCoO ₂ Crystal Layers Using a Flux Method and Their Application for Additive-Free Lithium-Ion Rechargeable Battery Cathodes. Crystal Growth and Design, 2014, 14, 1882-1887.	3.0	40
129	Intergrowth structure of \hat{l}_{\pm} -phase in \hat{l}^2 -type TmAlB4 compound studied by high-angle annular detector dark-field scanning transmission electron microscopy. Journal of Solid State Chemistry, 2014, 219, 274-279.	2.9	6
130	Thermal vacancy behavior analysis through thermal expansion, lattice parameter and elastic modulus measurements of B2-type FeAl. Acta Materialia, 2014, 64, 382-390.	7.9	31
131	Crystal growth and optical properties of Ce:(La,Gd)2Ge2O7 grown by the floating zone method. Journal of Crystal Growth, 2014, 393, 142-144.	1.5	7
132	Structure and magnetic properties of melt-spun Fe–Pt–B alloys with high B concentrations. Journal of Alloys and Compounds, 2014, 615, S252-S255.	5.5	5
133	Effect of P addition on the structure and magnetic properties of melt-spun Fe–Pt–B alloy. Journal of Alloys and Compounds, 2014, 586, S294-S297.	5.5	13
134	Alloy Designs of High-Entropy Crystalline and Bulk Glassy Alloys by Evaluating Mixing Enthalpy and Delta Parameter for Quinary to Decimal Equi-Atomic Alloys. Materials Transactions, 2014, 55, 165-170.	1.2	31
135	Structure of an Al–Cu–Co Decagonal Quasicrystal Studied by <i>C</i> s-Corrected STEM. Materials Transactions, 2014, 55, 866-870.	1.2	12
136	High Temperature Phase Behavior of BaTb ₂ O ₇ by Thermal Treatment of Single Crystals. Transactions of the Materials Research Society of Japan, 2014, 39, 53-56.	0.2	1
137	Fabrication of transparent–colorless Nb2O5 nanocrystal layers and their photocatalytic evaluation using organosilane thin films. Applied Surface Science, 2013, 280, 539-544.	6.1	6
138	Competition between magnetic ordering and random spin freezing in Dy2PtS3. Journal of the Korean Physical Society, 2013, 62, 2233-2238.	0.7	3
139	High-Performance p-Type Magnesium Silicon Thermoelectrics. Journal of Electronic Materials, 2013, 42, 1855-1863.	2.2	12
140	Crystal growth and characterization of Ce:Gd3(Ga,Al)5O12 single crystal using floating zone method in different O2 partial pressure. Optical Materials, 2013, 35, 1882-1886.	3.6	29
141	Flux growth of Sr2Ta2O7 crystals and subsequent nitridation to form SrTaO2N crystals. CrystEngComm, 2013, 15, 8133.	2.6	34
142	Surface-activated supercooled liquid brazing. Scripta Materialia, 2013, 68, 699-702.	5.2	3
143	High-resolution electron microscopy and X-ray diffraction study of intergrowth structures in \hat{l}_{\pm} - and \hat{l}_{\pm} -type YbAlB ₄ single crystals. Philosophical Magazine, 2013, 93, 1054-1064.	1.6	11
144	Environmentally Friendly Flux Growth of High-Quality, Idiomorphic Li ₅ La ₃ Nb ₂ O ₁₂ Crystals. Crystal Growth and Design, 2013, 13, 479-484.	3.0	12

#	Article	IF	CITATIONS
145	Strong magnetic coupling in a magnetically dilute f-electron insulator: A dysprosium boron-cluster compound. Journal of Applied Physics, 2013, 113, 17E156.	2.5	5
146	Entropies in Alloy Design for High-Entropy and Bulk Glassy Alloys. Entropy, 2013, 15, 3810-3821.	2.2	100
147	Preparation of ZnO thin films by MO-CVD using fibrous bis (acetylacetonato) zinc (II) and ozone. Journal of Physics: Conference Series, 2013, 417, 012059.	0.4	1
148	Synthesis and magnetic properties of fergusonite-structured La(NbVMn)O ₄ . Emerging Materials Research, 2013, 2, 191-197.	0.7	1
149	Local Structural Ordering in Cluster-Glass <i>RE</i> ₂ CuSi ₃ (<i>RE</i> = Ce and) Tj ETQq1	1.9.7843	14 rgBT /O
150	Al _{0.5} TiZrPdCuNi High-Entropy (H-E) Alloy Developed through Ti ₂₀ Zr ₂₀ 20Cu ₂₀ H-E Glassy Alloy Comprising Inter-Transition Metals. Materials Transactions, 2013, 54, 776-782.	Ni <sub8< td=""><td>492;20</s</td></sub8<>	492; 20</s
151	Crystal Structure and Pseudo-Mackay Clusters of <i>R</i> -AlPdCo. Materials Transactions, 2013, 54, 1385-1391.	1.2	8
152	ZrCu-Based Metallic Glass Matrix Composites with Ta Dispersoid by <i>In Situ</i> Dealloying Method. Materials Transactions, 2013, 54, 1416-1422.	1.2	5
153	Arrangement of Transition-Metal Atoms in an Approximant Crystal Related to Al–Cu–Co Decagonal Quasicrystals Studied by Cs-Corrected HAADF-STEM. , 2013, , 225-230.		4
154	Synthesis, microstructure and magnetic properties of low Nd content Fe90Nd5B3.5M1.5 (M = Hf, Ti and) Tj ETQq0) 0 0 rgBT 2.5	Overlock 1
155	Enhanced Thermoelectric Performance of a Chimney-Ladder (Mn _{1-x} Cr _x)Si _{\hat{l}^3} ($\hat{l}^3\hat{a}^1/41.7$) Solid Solution. Japanese Journal of Applied Physics, 2012, 51, 085801.	1.5	42
156	Fabrication of Ni Compound Nanocrystal/Nanocarbon Composites by Cooling of Chloride-Based Fluxes. Journal of Nanoscience and Nanotechnology, 2012, 12, 1530-1534.	0.9	1
157	Effects of (Ho _{<i>x</i>} Iâ^' <i>x</i>) _{1.9} Sn _{0.1} O ₃ matrix on magnetization of dispersed Fe ₃ O ₄ nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2570-2573.	1.8	O
158	The effect of different oxidative growth conditions on the scintillation properties of Ce:Gd ₃ Al ₃ Ga ₂ O ₁₂ crystal. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2251-2254.	0.8	10
159	Direct fabrication and nitridation of a high-quality NaTaO3 crystal layer onto a tantalum substrate. CrystEngComm, 2012, 14, 7178.	2.6	31
160	Growth of ultralong potassium titanate whiskers by the KCl flux method with metallic titanium materials. CrystEngComm, 2012, 14, 4176.	2.6	20
161	Fabrication and photocatalytic performance of highly crystalline nanosheets derived from flux-grown KNb ₃ O ₈ crystals. CrystEngComm, 2012, 14, 987-992.	2.6	27
162	Formation of bulk metallic glass in situ nanocomposite in (Cu50Zr43Al7)99Si1 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 553, 10-13.	5.6	10

#	Article	IF	Citations
163	Direct elucidation of the effect of building defects on the physical properties of alpha-TmAlB4; An AlB2-type analogous "tiling―compound. Journal of Applied Physics, 2012, 111, 07E127.	2.5	13
164	High-Quality Ultralong Hydroxyapatite Nanowhiskers Grown Directly on Titanium Surfaces by Novel Low-Temperature Flux Coating Method. Crystal Growth and Design, 2012, 12, 4890-4896.	3.0	17
165	Flux Growth of High-Quality LiCoO2 Crystals for All-Crystal-State Lithium-Ion Rechargeable Batteries. ECS Meeting Abstracts, 2012, , .	0.0	0
166	Enhanced Thermoelectric Performance of a Chimney-Ladder (Mn1-xCrx)Si $\hat{l}^3(\hat{l}^3\hat{a}^1/41.7)$ Solid Solution. Japanese Journal of Applied Physics, 2012, 51, 085801.	1.5	9
167	Selective growth of highly crystalline hydroxyapatite in a micro-reaction cell of agar gel. CrystEngComm, 2011, 13, 827-830.	2.6	8
168	The growth of highly crystalline, idiomorphic potassium titanoniobate crystals by the cooling of a potassium chloride flux. CrystEngComm, 2011, 13, 1190-1196.	2.6	12
169	Novel fast and easy growth of highly crystalline, idiomorphic fluorapatite crystals via an atmospheric pressure plasma-assisted flux coating method. CrystEngComm, 2011, 13, 1749.	2.6	6
170	Low-Temperature Flux Growth and Upconversion Fluorescence of the Idiomorphic Hexagonal-System NaYF4and NaYF4:Ln (Ln = Yb, Er, Tm) Crystals. Crystal Growth and Design, 2011, 11, 4825-4830.	3.0	23
171	Growth of Well-Developed Li ₄ Ti ₅ O ₁₂ Crystals by the Cooling of a Sodium Chloride Flux. Crystal Growth and Design, 2011, 11, 4401-4405.	3.0	38
172	Flux Growth of Highly Crystalline NaYF ₄ :Ln (Ln = Yb, Er, Tm) Crystals with Upconversion Fluorescence. Crystal Growth and Design, 2011, 11, 995-999.	3.0	60
173	Low core losses and magnetic properties of Fe85-86Si1-2B8P4Cu1 nanocrystalline alloys with high <i>B</i> for power applications (invited). Journal of Applied Physics, 2011, 109, .	2.5	132
174	Improved plasticity of iron-based high-strength bulk metallic glasses by copper-induced nanocrystallization. Journal of Non-Crystalline Solids, 2011, 357, 3002-3005.	3.1	16
175	Organic-Inorganic Conversion Process for Material Creation -Formation and Function of Characteristic Nanostructures E-Journal of Surface Science and Nanotechnology, 2011, 9, 181-187.	0.4	1
176	Evidence for spin-glass state in nonmagnetic atom disorder compound Pr ₂ AgIn ₃ . Journal of Physics: Conference Series, 2011, 320, 012041.	0.4	5
177	Fabrication of Highly Crystalline NbO _{<i>x</i>} Nanotube/Cup-Stacked CNT Nanocomposites. Journal of Nanoscience and Nanotechnology, 2011, 11, 6335-6340.	0.9	1
178	Nano- to submicro-porous \hat{l}^2 -Ti alloy prepared from dealloying in a metallic melt. Scripta Materialia, 2011, 65, 532-535.	5.2	93
179	Dealloying by metallic melt. Materials Letters, 2011, 65, 1076-1078.	2.6	193
180	Unique three-dimensional nano-/micro-textured surfaces consisting of highly crystalline Nb2O5 nanotubes. Journal of Crystal Growth, 2011, 318, 1095-1100.	1.5	5

#	Article	IF	Citations
181	Preparation and Thermoelectric Properties of a Chimney-Ladder (Mn _{1-x} Fe _x)Si _{\hat{l}^3} ($\hat{l}^3\hat{a}^4$ 1.7) Solid Solution. Japanese Journal of Applied Physics, 2011, 50, 035804.	1.5	30
182	Preparation and Thermoelectric Properties of a Chimney-Ladder (Mn _{1-<i>x</i>} Fe _{<i>x</i>} Si _{\hat{l}^3} ($\hat{l}^3\hat{a}^1/41.7$) Solid Solution. Japanese Journal of Applied Physics, 2011, 50, 035804.	1.5	26
183	Electron Density Distribution in Mn4Si7. Journal of Electronic Materials, 2010, 39, 1482-1487.	2.2	6
184	Precise Control of Na Content in the Layered Cobaltate \hat{I}^3 -Na x CoO2. Journal of Electronic Materials, 2010, 39, 1669-1673.	2.2	9
185	Molecular dynamics simulations of critically percolated, cluster-packed structure in Zr–Al–Ni bulk metallic glass. Journal of Materials Science, 2010, 45, 4898-4905.	3.7	8
186	Highly Crystalline, Idiomorphic Na ₂ Ti ₆ O ₁₃ Whiskers Grown from a NaCl Flux at a Relatively Low Temperature. European Journal of Inorganic Chemistry, 2010, 2010, 2936-2940.	2.0	34
187	Effect of Cu on nanocrystallization and plastic properties of FeSiBPCu bulk metallic glasses. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2598-2602.	5.6	42
188	Effect of Cobalt-Substitution on the Structure and Thermoelectric Properties of Chimney-Ladder Solid Solution (Mn _{1-x} Co _x)Si _{\hat{I}^3} (<i>\hat{I}^3</i> 1.7). Advances in Science and Technology, 2010, 74, 22-25.	0.2	6
189	Instantaneous nano-order fragmentation in mullite ceramics triggered by a shock-induced phase transition. Journal of Applied Physics, 2010, 108, 093523.	2.5	3
190	Effects of silver deposition on 405nm light-driven zinc oxide photocatalyst. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 188-193.	1.2	6
191	Thermoelectric Properties of Polycrystalline Ca0.9Yb0.1MnO3Prepared from Nanopowder Obtained by Gas-Phase Reaction and Its Application to Thermoelectric Power Devices. Japanese Journal of Applied Physics, 2010, 49, 071101.	1.5	14
192	Physical properties of β-TmAlB4; an AlB2-type analogous "tiling―compound. Journal of Applied Physics, 2010, 107, 09E112.	2.5	7
193	Domain wall assisted magnetization switching in (111) oriented L1 FePt grown on a soft magnetic metallic glass. Applied Physics Letters, 2010, 97, .	3.3	13
194	Transport properties of the layered Rh oxide KO.49RhO2. Journal of Physics Condensed Matter, 2010, 22, 115603.	1.8	24
195	Environmentally Friendly Growth of Well-Developed LiCoO ₂ Crystals for Lithium-lon Rechargeable Batteries Using a NaCl Flux. Crystal Growth and Design, 2010, 10, 4471-4475.	3.0	51
196	Zr60Al15(Ni,Cu)25 noncrystalline alloys created by referring to ionic arrangements of a garnet structure with molecular dynamics simulations based on a plastic crystal model. Intermetallics, 2010, 18, 330-341.	3.9	0
197	Unusual compressive plasticity of a centimeter-diameter Zr-based bulk metallic glass with high Zr content. Journal of Alloys and Compounds, 2010, 504, S2-S5.	5.5	34
198	A Unique Three-Dimensional Photocatalytic Structure Consisting of Highly Crystalline Na ₂ Ti ₃ O ₇ Whiskers Grown from a NaCl Flux. Crystal Growth and Design, 2010, 10, 2533-2540.	3.0	14

#	Article	IF	CITATIONS
199	An environmentally friendly dispersion method for cup-stacked carbon nanotubes in a water system. Chemical Communications, 2010, 46, 2295.	4.1	13
200	Growth of well-developed sodium tantalate crystals from a sodium chloride flux. CrystEngComm, 2010, 12, 2871.	2.6	33
201	Brittle metallic glass deforms plastically at room temperature in glassy multilayers. Physical Review B, 2009, 80, .	3.2	32
202	Shock-induced disproportionation of mullite (3Al2O3â«2SiO2). Journal of Applied Physics, 2009, 106, 023525.	2.5	6
203	High-resolution electron microscopy for incommensurate structure of K <i> </i> RhO ₂ crystal. Philosophical Magazine, 2009, 89, 2813-2822.	1.6	10
204	Thermal Conductivity Characterization in Bulk Zn(Mn,Ga)O ₄ with Self-Assembled Nanocheckerboard Structures. Japanese Journal of Applied Physics, 2009, 48, 010201.	1.5	6
205	Intergrowth microstructures of MnF2subjected to shock compression. Philosophical Magazine, 2009, 89, 323-330.	1.6	0
206	The effect of Cu on the plasticity of Fe–Si–B–P-based bulk metallic glass. Scripta Materialia, 2009, 60, 277-280.	5.2	69
207	Direct observation of the intergrown $\hat{l}\pm$ -phase in \hat{l}^2 -TmAlB4 via high-resolution electron microscopy. Materials Research Bulletin, 2009, 44, 1743-1746.	5.2	16
208	New Excellent Soft Magnetic FeSiBPCu Nanocrystallized Alloys With High \$B_{s}\$ of 1.9 T From Nanohetero-Amorphous Phase. IEEE Transactions on Magnetics, 2009, 45, 4302-4305.	2.1	118
209	On the Excess Oxygen in Four-Layered Rock-Salt-Type Units of Modulated Thermoelectric Bi-Sr-(Co,Rh)-O Compounds. Journal of Electronic Materials, 2009, 38, 1116-1120.	2.2	0
210	Solid-State Self-Assembly of Nanostructured Oxide as a Candidate High-Performance Thermoelectric Material. Journal of Electronic Materials, 2009, 38, 1303-1308.	2.2	4
211	Discommensuration of Doped [Ca2CoO3] p CoO2. Journal of Electronic Materials, 2009, 38, 1462-1467.	2.2	8
212	Direct observations of ordered R2CuSi3 (R=Ce and Nd) cluster–glass compounds in real space by HRTEM. Solid State Communications, 2009, 149, 286-289.	1.9	8
213	Direct Growth of Highly Crystalline, Idiomorphic Fluorapatite Crystals on a Polymer Substrate. Crystal Growth and Design, 2009, 9, 3832-3834.	3.0	12
214	Structural variations of ScRh3Bx (x=0â€"1) phase studied by transmission electron microscopy. Journal of Alloys and Compounds, 2009, 471, 341-346.	5.5	12
215	Evaluation of glass-forming ability of binary metallic glasses with liquidus temperature, crystallographic data from binary phase diagrams and molecular dynamics simulations. Journal of Alloys and Compounds, 2009, 483, 102-106.	5.5	16
216	Extended short-range ferromagnetic order with cluster-glass behavior in Dy2AuSi3. Journal of Alloys and Compounds, 2009, 488, 558-561.	5.5	4

#	Article	IF	CITATIONS
217	Soft magnetic FeSiBPCu heteroamorphous alloys with high Fe content. Journal of Applied Physics, 2009, 105, .	2.5	71
218	Morphologically Controlled Fibrous Spherulites of an Apatite Precursor Biocrystal. Crystal Growth and Design, 2009, 9, 650-652.	3.0	21
219	Well-Formed One-Dimensional Hydroxyapatite Crystals Grown by an Environmentally Friendly Flux Method. Crystal Growth and Design, 2009, 9, 2937-2940.	3.0	65
220	New Fe-metalloids based nanocrystalline alloys with high Bs of $1.9\mathrm{T}$ and excellent magnetic softness. Journal of Applied Physics, $2009,105,.$	2.5	144
221	Highly crystalline niobium oxide converted from flux-grown K4Nb6O17 crystals. CrystEngComm, 2009, 11, 2326.	2.6	18
222	Cluster packed structures in bulk metallic glasses created from BCC derivative compounds. Journal of Physics: Conference Series, 2009, 144, 012045.	0.4	5
223	The structure and magnetic properties of melt-spun Fe55Pt25B18M2(M = C, P, Si) alloys. Journal of Physics: Conference Series, 2009, 144, 012072.	0.4	3
224	Effect of Cu and P on the Crystallization Behavior of Fe-Rich Hetero-Amorphous FeSiB Alloy. Materials Transactions, 2009, 50, 2515-2520.	1.2	46
225	Fe-Rich Soft Magnetic FeSiBPCu Hetero-Amorphous Alloys with High Saturation Magnetization. Materials Transactions, 2009, 50, 1330-1333.	1.2	19
226	Mechanical Properties of Soft Magnetic (Fe _{0.76} Si _{O.084} P _{O.084} O.084O	06&dt/SU	B>) <su< td=""></su<>
227	Formation, Thermal Stability, and Mechanical Properties of Glassy Zr ₆₀ Al ₁₀ N _{Cu_{2000, 2021-2027.}}	JB& g t;	12
228	FeSiBPCu Nanocrystalline Soft Magnetic Alloys with High <i>B</i> _s of 1.9 Tesla Produced by Crystallizing Hetero-Amorphous Phase. Materials Transactions, 2009, 50, 204-209.	1.2	201
229	Formation, Thermal Stability and Mechanical Properties of Bulk Glassy Alloys with a Diameter of 20 mm in Zr-(Ti,Nb)-Al-Ni-Cu System. Materials Transactions, 2009, 50, 388-394.	1.2	18
230	Wettability control of photocatalytic crystal layers by hydrophobic coating and subsequent UV light irradiation. Surface and Coatings Technology, 2008, 203, 812-815.	4.8	3
231	Anomalous behavior of hardness and crystal structure in CeRh3Bx (x=0â€"1) phase. Journal of Alloys and Compounds, 2008, 451, 301-304.	5 . 5	9
232	Noncrystalline atomic arrangements computationally created from crystalline compound by treating groups of atoms as hypothetical clusters. Intermetallics, 2008, 16, 283-292.	3.9	17
233	Noncrystalline structure created through ensemble of clusters in metastable cubic Zr2Ni structure by their random rotations and subsequent annealing. Intermetallics, 2008, 16, 774-778.	3.9	12
234	Formation of Zr66.7Al11.1Ni22.2 noncrystalline alloys demonstrated by molecular dynamics simulations based on distorted plastic crystal model. Intermetallics, 2008, 16, 819-826.	3.9	12

#	Article	IF	CITATIONS
235	Phase stability of Cu2Mg and CuMg2 compounds against noncrystallizations analyzed with a plastic crystal model. Intermetallics, 2008, 16, 1273-1278.	3.9	7
236	Highly Crystalline Chlorapatite Films Prepared by the Evaporation of a Sodium Chloride Flux. Crystal Growth and Design, 2008, 8, 2595-2597.	3.0	6
237	Environmentally Friendly Growth of Highly Crystalline Photocatalytic Na ₂ Ti ₆ O ₁₃ Whiskers from a NaCl Flux. Crystal Growth and Design, 2008, 8, 465-469.	3.0	56
238	Synthesis of soft/hard magnetic FePt-based glassy alloys with supercooled liquid region. Journal of Applied Physics, 2008, 104, 103540.	2.5	5
239	Crystallisation by laser for Zr based bulk metallic glass. International Journal of Cast Metals Research, 2008, 21, 148-151.	1.0	3
240	Fabrication of MoO2Crystal/Carbon Nanofiber Composites via LiCl–KCl Flux. Japanese Journal of Applied Physics, 2008, 47, 735-737.	1.5	0
241	Environmentally Friendly Growth and Characterization of Photocatalytic K2Nb8O21Crystals. Japanese Journal of Applied Physics, 2008, 47, 629-632.	1.5	12
242	Disorder-order transitions in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Na</mml:mtext></mml:mrow><mml:mi>x<mml:mrow><mml:mrow><mml:mi>x(<mml:mrow><mml:mi>x</mml:mi>x</mml:mrow></mml:mi>x</mml:mrow></mml:mrow></mml:mi>xxx<td>3.2</td><td>16</td></mml:msub></mml:mrow></mml:math>	3.2	16
243	Physical Review B. 2008, 78 xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mi>ixmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>i3</mml:mi>xml:mo>(<mml:mrow><mml:mi>i3</mml:mi>xml:mo>(<mml:mrow><mml:mi>i3</mml:mi>xml:mi</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow>	0.2	100
244	Physical Review B, 2008, 78, Excellent Thermal Stability and Bulk Glass Forming Ability of Fe-B-Nb-Y Soft Magnetic Metallic Glass. Materials Transactions, 2008, 49, 506-512.	1.2	52
245	Structure, Thermal Stability and Mechanical Properties of Zr ₆₅ Al _{7.5} Ni ₁₀ Cu _{17.5<td>SUB></td><td>22</td>}	SUB>	22
246	Relationship between Microstructures and Soft Magnetic Properties of Simultaneously P and Cu-Added Fe-Nb-B Ribbon Alloys. Materials Transactions, 2008, 49, 1780-1784.	1.2	7
247	Microstructures of Pd _{47.5} Ag _{47.5} La ₅ Alloy Studied by Transmission Electron Microscopy. Materials Transactions, 2008, 49, 1775-1779.	1.2	0
248	High-Resolution Electron Microscopy Study of [(Ca,Bi) ₂ CoO ₃] _{0.62} CoO ₂ . Journal of the Physical Society of Japan, 2008, 77, 094603.	1.6	4
249	TEM OBSERVATION OF DISPROPORTIONATION OF MULLITE AND SILLIMANITE UNDER SHOCK COMPRESSION. , 2008, , .		1
250	Discommensurate Structure in [(Ca0.90Sr0.10)2CoO3]0.61CoO2. Journal of the Physical Society of Japan, 2008, 77, 064604.	1.6	3
251	Hydrogen Sensors Using Pd-Based Metallic Glassy Alloys. IEEJ Transactions on Sensors and Micromachines, 2008, 128, 225-229.	0.1	6
252	Approximant structures for the AlCo-based decagonal phases. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, C141-C142.	0.3	0

#	Article	IF	Citations
253	Boron ordering in CeRh3Bxand ScRh3Bxalloys. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, C456-C456.	0.3	O
254	Crystal Structure of Sr0.35CoO2Compound Studied by High-Resolution Electron Microscopy. Japanese Journal of Applied Physics, 2007, 46, 712-715.	1.5	5
255	Phase transition ofMnF2driven by shock compression at pressure of up to33GPa. Physical Review B, 2007, 76, .	3.2	14
256	Improvement of soft magnetic properties by simultaneous addition of P and Cu for nanocrystalline FeNbB alloys. Journal of Applied Physics, 2007, 101, 09N117.	2.5	28
257	Modulated Structure of Bi _{1.8} Sr _{2.0} Rh _{1.6} O _x . Key Engineering Materials, 2007, 336-338, 818-821.	0.4	O
258	Static and Dynamic Characteristics of Thermoelectric Ceramics. Key Engineering Materials, 2007, 336-338, 826-830.	0.4	O
259	Superspace Group Approach to the Crystal Structure of NaO.5CoO2. Japanese Journal of Applied Physics, 2007, 46, 304-310.	1.5	10
260	Friction and Wear of Laser Irradiated Amorphous Metals. Materials Science Forum, 2007, 539-543, 3844-3849.	0.3	O
261	Fine Crystalline Phase Dispersion in Zr-Based Bulk Metallic Glass by Laser Irradiation. Advanced Materials Research, 2007, 26-28, 747-750.	0.3	O
262	Characterization of β ′ Precipitate Phase in Mg-2 at Y Alloy Aged to Peak Hardness Condition by High-Angle Annular Detector Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM). Materials Transactions, 2007, 48, 84-87.	1.2	93
263	Growth of Na2Ti6O13 Whiskers from the High-Temperature Solutions of NaCl-TiO2 System. Journal of the Ceramic Society of Japan, 2007, 115, 230-232.	1.3	7
264	Synthesis of zinc oxide fibers from precursor bis(acetylacetonato)zinc. Journal of Alloys and Compounds, 2007, 439, 227-231.	5.5	15
265	Structural characterization of ZnO nano-chains studied by electron microscopy. Journal of Alloys and Compounds, 2007, 436, 396-399.	5.5	20
266	High-resolution electron microscopy study of misfit-layered Bi-based cobaltites. Philosophical Magazine, 2007, 87, 2663-2669.	1.6	3
267	Influence of quenching rate on the microstructure and magnetic properties of melt-spun L10-FePtâ-Fe2B nanocomposite magnets. Journal of Applied Physics, 2007, 101, 09K518.	2.5	9
268	Modulated structure of the misfit-layered compound Bi _{2.12} Ba _{2.00} Rh _{1.95} O <i> _x </i> Philosophical Magazine, 2007, 87, 2641-2646.	1.6	o
269	Aligned Nanocrystalline Fragmentation of Mullite under Shock Loading. Advanced Materials, 2007, 19, 2375-2378.	21.0	13
270	Environmentally Friendly Growth of Layered K4Nb6O17 Crystals from a KCl Flux. European Journal of Inorganic Chemistry, 2007, 2007, 4687-4692.	2.0	23

#	Article	IF	CITATIONS
271	High-resolution electron microscopy of microstructure of MnF2 subjected to shock compression at 4.4 GPa. Solid State Communications, 2007, 143, 127-130.	1.9	8
272	Reductive atmosphere of supercritical water with RuO2 resulting in TcO2 colloid: Spectroscopic, morphological and crystallographic study on solutions and precipitates in Hastelloy C-22. Journal of Supercritical Fluids, 2007, 43, 317-323.	3.2	4
273	Environmentally Friendly Growth of Calcium Chlorapatite Whiskers from a Sodium Chloride Flux. Crystal Growth and Design, 2006, 6, 2538-2542.	3.0	20
274	High-resolution electron microscopy of thermoelectric compounds Bi-(Sr,Ba)-Rh-O., 2006, , .		0
275	Selective Growth of Calcium Molybdate Whiskers by Rapid Cooling of a Sodium Chloride Flux. Crystal Growth and Design, 2006, 6, 1598-1601.	3.0	28
276	Crystal structure and magnetic state of U2XSi3 (X=Fe, Pt). Journal of Alloys and Compounds, 2006, 408-412, 1324-1328.	5.5	13
277	Boron nonstoichiometry, hardness and oxidation resistance of perovskite-type CeRh3Bx (x=0–1). Journal of Alloys and Compounds, 2006, 426, 304-307.	5.5	16
278	Crystal structure of a Cu3Au-type compound CeRh3B0.5 studied by high-resolution electron microscopy. Journal of Alloys and Compounds, 2006, 426, 308-311.	5.5	13
279	Synthesis of Fe–Pt–B nanocomposite magnets with high coercivity by rapid solidification. Journal of Applied Physics, 2006, 99, 08E914.	2.5	16
280	Flux Growth and Characterization of Photocatalytic Na2Ti6O13Whiskers. Bulletin of the Chemical Society of Japan, 2006, 79, 1725-1728.	3.2	26
281	Modulated Structure of Misfit-Layered Compound [Bi2.08Sr1.67Oy]0.54[CoO2]. Japanese Journal of Applied Physics, 2006, 45, 4159-4164.	1.5	13
282	Crystal Structure of Misfit-Layered Compound [Bi1.94Ba1.83Oy]0.56[RhO2]. Japanese Journal of Applied Physics, 2006, 45, 179-185.	1.5	14
283	Direct observation of the microstructure in cluster glass compound U2IrSi3. Journal of Physics Condensed Matter, 2006, 18, 6109-6116.	1.8	20
284	Phase Transition of MnF2 by Shock Compression up to 33 GPa. AIP Conference Proceedings, 2006, , .	0.4	0
285	Crystal Structure of Thermoelectric Compound [Bi1.79Sr1.98Oy]0.63[RhO2]. Japanese Journal of Applied Physics, 2005, 44, 8557-8561.	1.5	16
286	Interactions of uranium with bacteria and kaolinite clay. Chemical Geology, 2005, 220, 237-243.	3.3	61
287	Spin-glass behavior in CeCu2-type uranium compound U2AuGa3. Applied Physics Letters, 2005, 87, 142505.	3.3	19
288	Influence of nanoprecipitation on strength of Cu60Zr30Ti10 glass containing \hat{l}^{1} 4m-ZrC particle reinforcements. Scripta Materialia, 2004, 51, 577-581.	5.2	45

#	ARTICLE	IF	CITATIONS
289	Current status of ductile tungsten alloy development by mechanical alloying. Journal of Nuclear Materials, 2004, 329-333, 775-779.	2.7	41
290	Spin-glass behavior in ternary uranium compound U2CuGa3. Journal of Alloys and Compounds, 2004, 374, 226-229.	5.5	5
291	In situ TEM observation of dislocation movement through the ultrafine obstacles in an Fe alloy. Journal of Nuclear Materials, 2002, 307-311, 946-950.	2.7	29
292	The Structure of an Al-Co-Ni Crystalline Approximant with an Ordered Arrangement of Atomic Clusters with Pentagonal Symmetry. Materials Transactions, 2001, 42, 897-900.	1.2	14
293	Positron confinement in ultrafine embedded particles: Quantum-dot-like state in an Fe-Cu alloy. Physical Review B, 2000, 61, 6574-6578.	3.2	191
294	A new crystalline phase related to decagonal quasicrystals with non-central symmetry in Al-Co-Pd alloys. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1997, 75, 273-284.	0.6	15
295	Structure of the Alî—¸Rhî—¸Cu decagonal quasicrystal: I. A unit-cell approach. Physica B: Condensed Matter, 1997, 240, 330-337.	2.7	6
296	High-resolution electron microscopy of Al–Ni–Fe decagonal quasicrystal. Journal of Materials Research, 1996, 11, 1702-1705.	2.6	22
297	The crystal structure of a new crystalline phase in the Al-Pd-Cr alloy system, studied by high-resolution electron microscopy. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1995, 71, 71-80.	0.6	18
298	Thermoelectric Energy Conversion and Ceramic Thermoelectrics. Materials Science Forum, 0, 671, 1-20.	0.3	4
299	Synthesis and Physical Properties of (Na _{nab>)AlB₁₄ (RE=Li, Mg, Rare) Tj ETQ}	q101:00.784	43 Ф 4 rgBT /С
300	Nanofragmentation Controlled by a Shock-Induced Phase Transition in Mullite Related Ceramics and its Application. Materials Science Forum, 0, 706-709, 717-722.	0.3	1