
Hanna K A Mikkola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4023739/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Yolk sac steps up to the plate. Journal of Experimental Medicine, 2022, 219, .	8.5	0
2	Decoding Human Hematopoietic Stem Cell Self-Renewal. Current Stem Cell Reports, 2022, 8, 93-106.	1.6	3
3	Mapping human haematopoietic stem cells from haemogenic endothelium to birth. Nature, 2022, 604, 534-540.	27.8	88
4	VEGF-C protects the integrity of the bone marrow perivascular niche in mice. Blood, 2020, 136, 1871-1883.	1.4	38
5	MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment. Nature, 2019, 576, 281-286.	27.8	94
6	Analysis of cardiomyocyte clonal expansion during mouse heart development and injury. Nature Communications, 2018, 9, 754.	12.8	94
7	Protagonist or antagonist? The complex roles of retinoids in the regulation of hematopoietic stem cells and their specification from pluripotent stem cells. Experimental Hematology, 2018, 65, 1-16.	0.4	7
8	Genetic Regulation of Fibroblast Activation and Proliferation in Cardiac Fibrosis. Circulation, 2018, 138, 1224-1235.	1.6	56
9	Hepatic Leukemia Factor Maintains Quiescence of Hematopoietic Stem Cells and Protects the Stem Cell Pool during Regeneration. Cell Reports, 2017, 21, 3514-3523.	6.4	72
10	Medial HOXA genes demarcate haematopoietic stem cell fate during human development. Nature Cell Biology, 2016, 18, 595-606.	10.3	81
11	LYVE1 Marks the Divergence of Yolk Sac Definitive Hemogenic Endothelium from the Primitive Erythroid Lineage. Cell Reports, 2016, 17, 2286-2298.	6.4	57
12	Critical requirement of VEGF-C in transition to fetal erythropoiesis. Blood, 2016, 128, 710-720.	1.4	33
13	Differentiation of human embryonic stem cells to HOXA+ hemogenic vasculature that resembles the aorta-gonad-mesonephros. Nature Biotechnology, 2016, 34, 1168-1179.	17.5	150
14	MEF2C protects bone marrow B-lymphoid progenitors during stress haematopoiesis. Nature Communications, 2016, 7, 12376.	12.8	24
15	Tracking HSC Origin: From Bench to Placenta. Developmental Cell, 2016, 36, 479-480.	7.0	1
16	GLI2 inhibition abrogates human leukemia stem cell dormancy. Journal of Translational Medicine, 2015, 13, 98.	4.4	80
17	The Histone Methyltransferase Activity of MLL1 Is Dispensable for Hematopoiesis and Leukemogenesis. Cell Reports, 2014, 7, 1239-1247.	6.4	110
18	Progesterone Receptor in the Vascular Endothelium Triggers Physiological Uterine Permeability Preimplantation, Cell, 2014, 156, 549-562.	28.9	62

Hanna K A Mikkola

#	Article	IF	CITATIONS
19	InÂVivo Mapping of Notch Pathway Activity in Normal and Stress Hematopoiesis. Cell Stem Cell, 2013, 13, 190-204.	11.1	80
20	Haemogenic endocardium contributes to transient definitive haematopoiesis. Nature Communications, 2013, 4, 1564.	12.8	119
21	Expansion on Stromal Cells Preserves the Undifferentiated State of Human Hematopoietic Stem Cells Despite Compromised Reconstitution Ability. PLoS ONE, 2013, 8, e53912.	2.5	28
22	Scl Represses Cardiomyogenesis in Prospective Hemogenic Endothelium and Endocardium. Cell, 2012, 150, 590-605.	28.9	142
23	Trophoblasts Regulate the Placental Hematopoietic Niche through PDGF-B Signaling. Developmental Cell, 2012, 22, 651-659.	7.0	47
24	Mef2C Maintains B Cell Homeostasis Through the Regulation of DNA Repair Machinery. Blood, 2012, 120, 278-278.	1.4	3
25	Return to youth with Sox17: Figure 1 Genes and Development, 2011, 25, 1557-1562.	5.9	6
26	Placenta as a newly identified source of hematopoietic stem cells. Current Opinion in Hematology, 2010, 17, 313-318.	2.5	25
27	The first trimester human placenta is a site for terminal maturation of primitive erythroid cells. Blood, 2010, 116, 3321-3330.	1.4	87
28	Mef2C is a lineage-restricted target of Scl/Tal1 and regulates megakaryopoiesis and B-cell homeostasis. Blood, 2009, 113, 3461-3471.	1.4	51
29	ESAM: adding to the hematopoietic toolbox. Blood, 2009, 113, 2871-2872.	1.4	2
30	The Emergence of Hematopoietic Stem Cells IsÂInitiated in the Placental Vasculature in the Absence of Circulation. Cell Stem Cell, 2008, 2, 252-263.	11.1	282
31	Isolation and Visualization of Mouse Placental Hematopoietic Stem Cells. Current Protocols in Stem Cell Biology, 2008, 6, Unit 2A.8.1-2A.8.14.	3.0	8
32	The hematopoietic stem cell and its niche: a comparative view. Genes and Development, 2007, 21, 3044-3060.	5.9	191
33	The journey of developing hematopoietic stem cells. Development (Cambridge), 2006, 133, 3733-3744.	2.5	448
34	Transcriptional Activators, Repressors, and Epigenetic Modifiers Controlling Hematopoietic Stem Cell Development. Pediatric Research, 2006, 59, 33R-39R.	2.3	38
35	Tie2Cre-mediated gene ablation defines the stem-cell leukemia gene (SCL/tal1)–dependent window during hematopoietic stem-cell development. Blood, 2005, 105, 3871-3874.	1.4	93
36	The Placenta Is a Niche for Hematopoietic Stem Cells. Developmental Cell, 2005, 8, 365-375.	7.0	561

#	Article	IF	CITATIONS
37	Knockdown of ABCme Impairs Heme Biosynthesis as Revealed by Integrating of RNAi and the LiveCell® Array Blood, 2005, 106, 3732-3732.	1.4	0
38	Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene. Nature, 2003, 421, 547-551.	27.8	344
39	Expression of CD41 marks the initiation of definitive hematopoiesis in the mouse embryo. Blood, 2003, 101, 508-516.	1.4	328