Martin G De Kauwe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4023619/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Red light shines a path forward on leaf minimum conductance. New Phytologist, 2022, 233, 5-7.	7.3	1
2	Temperature responses of photosynthesis and respiration in evergreen trees from boreal to tropical latitudes. New Phytologist, 2022, 234, 353-374.	7.3	52
3	Thirty-eight years of CO ₂ fertilization has outpaced growing aridity to drive greening of Australian woody ecosystems. Biogeosciences, 2022, 19, 491-515.	3.3	13
4	One Stomatal Model to Rule Them All? Toward Improved Representation of Carbon and Water Exchange in Global Models. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	20
5	A flux tower dataset tailored for land model evaluation. Earth System Science Data, 2022, 14, 449-461.	9.9	11
6	Assessing the potential for crop albedo enhancement in reducing heatwave frequency, duration, and intensity under future climate change. Weather and Climate Extremes, 2022, 35, 100415.	4.1	2
7	Decoupling between ecosystem photosynthesis and transpiration: a last resort against overheating. Environmental Research Letters, 2022, 17, 044013.	5.2	22
8	Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment, 2022, 3, 294-308.	29.7	163
9	Bridge to the future: Important lessons from 20Âyears of ecosystem observations made by the OzFlux network. Global Change Biology, 2022, 28, 3489-3514.	9.5	14
10	Reconciling historical changes in the hydrological cycle over land. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	7
11	Examining the role of environmental memory in the predictability of carbon and water fluxes across Australian ecosystems. Biogeosciences, 2022, 19, 1913-1932.	3.3	6
12	Towards speciesâ€level forecasts of droughtâ€induced tree mortality risk. New Phytologist, 2022, 235, 94-110.	7.3	12
13	Predicting resilience through the lens of competing adjustments to vegetation function. Plant, Cell and Environment, 2022, 45, 2744-2761.	5.7	8
14	How do groundwater dynamics influence heatwaves in southeast Australia?. Weather and Climate Extremes, 2022, 37, 100479.	4.1	3
15	Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO ₂ . New Phytologist, 2021, 229, 2413-2445.	7.3	286
16	Beyond ecosystem modeling: A roadmap to community cyberinfrastructure for ecological dataâ€model integration. Global Change Biology, 2021, 27, 13-26.	9.5	44
17	Interannual variability of ecosystem iso/anisohydry is regulated by environmental dryness. New Phytologist, 2021, 229, 2562-2575.	7.3	23
18	Evaluating a land surface model at a water-limited site: implications for land surface contributions to droughts and heatwaves. Hydrology and Earth System Sciences. 2021. 25. 447-471.	4.9	15

#	Article	IF	CITATIONS
19	Disentangling the Regional Climate Impacts of Competing Vegetation Responses to Elevated Atmospheric CO 2. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034108.	3.3	6
20	Examining the sensitivity of the terrestrial carbon cycle to the expression of El Niñ0. Biogeosciences, 2021, 18, 2181-2203.	3.3	2
21	A reporting format for leaf-level gas exchange data and metadata. Ecological Informatics, 2021, 61, 101232.	5.2	22
22	Advances in Land Surface Modelling. Current Climate Change Reports, 2021, 7, 45-71.	8.6	43
23	Improvement of modeling plant responses to low soil moisture in JULESvn4.9 and evaluation against flux tower measurements. Geoscientific Model Development, 2021, 14, 3269-3294.	3.6	15
24	Annual precipitation explains variability in dryland vegetation greenness globally but not locally. Global Change Biology, 2021, 27, 4367-4380.	9.5	44
25	Patterns of postâ€drought recovery are strongly influenced by drought duration, frequency, postâ€drought wetness, and bioclimatic setting. Global Change Biology, 2021, 27, 4630-4643.	9.5	37
26	To what extent can rising [CO ₂] ameliorate plant drought stress?. New Phytologist, 2021, 231, 2118-2124.	7.3	39
27	Exploring how groundwater buffers the influence of heatwaves on vegetation function during multi-year droughts. Earth System Dynamics, 2021, 12, 919-938.	7.1	18
28	Assessing the representation of the Australian carbon cycle in global vegetation models. Biogeosciences, 2021, 18, 5639-5668.	3.3	21
29	RETRACTED ARTICLE: A constraint on historic growth in global photosynthesis due to increasing CO2. Nature, 2021, 600, 253-258.	27.8	50
30	Mesophyll conductance in land surface models: effects on photosynthesis and transpiration. Plant Journal, 2020, 101, 858-873.	5.7	30
31	Plant profit maximization improves predictions of European forest responses to drought. New Phytologist, 2020, 226, 1638-1655.	7.3	59
32	Low phosphorus supply constrains plant responses to elevated CO ₂ : A metaâ€analysis. Global Change Biology, 2020, 26, 5856-5873.	9.5	37
33	Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nature Communications, 2020, 11, 3853.	12.8	215
34	Robust Future Changes in Meteorological Drought in <scp>CMIP6</scp> Projections Despite Uncertainty in Precipitation. Geophysical Research Letters, 2020, 47, e2020GL087820.	4.0	239
35	Influence of sun zenith angle on canopy clumping and the resulting impacts on photosynthesis. Agricultural and Forest Meteorology, 2020, 291, 108065.	4.8	24
36	Identifying areas at risk of droughtâ€induced tree mortality across Southâ€Eastern Australia. Global Change Biology, 2020, 26, 5716-5733.	9.5	79

#	Article	IF	CITATIONS
37	The fate of carbon in a mature forest under carbon dioxide enrichment. Nature, 2020, 580, 227-231.	27.8	218
38	Rainfall manipulation experiments as simulated by terrestrial biosphere models: Where do we stand?. Global Change Biology, 2020, 26, 3336-3355.	9.5	50
39	Drought Impacts on Australian Vegetation During the Millennium Drought Measured With Multisource Spaceborne Remote Sensing. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JC005145.	3.0	20
40	Low sensitivity of gross primary production to elevated CO ₂ in a mature eucalypt woodland. Biogeosciences, 2020, 17, 265-279.	3.3	17
41	Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nature Geoscience, 2019, 12, 736-741.	12.9	177
42	Desiccation time during drought is highly predictable across species of <i>Eucalyptus</i> from contrasting climates. New Phytologist, 2019, 224, 632-643.	7.3	65
43	Incorporating non-stomatal limitation improves the performance of leaf and canopy models at high vapour pressure deficit. Tree Physiology, 2019, 39, 1961-1974.	3.1	24
44	How representative are FLUXNET measurements of surface fluxes during temperature extremes?. Biogeosciences, 2019, 16, 1829-1844.	3.3	11
45	The quasi-equilibrium framework revisited: analyzing long-term CO ₂ enrichment responses in plant–soil models. Geoscientific Model Development, 2019, 12, 2069-2089.	3.6	5
46	The Nonradiative Effect Dominates Local Surface Temperature Change Caused by Afforestation in China. Journal of Climate, 2019, 32, 4445-4471.	3.2	42
47	Examining the evidence for decoupling between photosynthesis and transpiration during heat extremes. Biogeosciences, 2019, 16, 903-916.	3.3	54
48	Observed and modelled historical trends in the waterâ€use efficiency of plants and ecosystems. Global Change Biology, 2019, 25, 2242-2257.	9.5	85
49	Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment. Nature Communications, 2019, 10, 454.	12.8	68
50	Effects of mesophyll conductance on vegetation responses to elevated CO ₂ concentrations in a land surface model. Global Change Biology, 2019, 25, 1820-1838.	9.5	38
51	Evaluation of the CABLEv2.3.4 Land Surface Model Coupled to NUâ€WRFv3.9.1.1 in Simulating Temperature and Precipitation Means and Extremes Over CORDEX AustralAsia Within a WRF Physics Ensemble. Journal of Advances in Modeling Earth Systems, 2019, 11, 4466-4488.	3.8	7
52	Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytologist, 2019, 222, 768-784.	7.3	171
53	Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Global Change Biology, 2018, 24, 2390-2402.	9.5	242
54	Xylem embolism refilling and resilience against droughtâ€induced mortality in woody plants: processes and tradeâ€offs. Ecological Research, 2018, 33, 839-855.	1.5	116

#	Article	IF	CITATIONS
55	Towards physiologically meaningful waterâ€use efficiency estimates from eddy covariance data. Global Change Biology, 2018, 24, 694-710.	9.5	105
56	Does predictability of fluxes vary between FLUXNET sites?. Biogeosciences, 2018, 15, 4495-4513.	3.3	21
57	Inferring the effects of sink strength on plant carbon balance processes from experimental measurements. Biogeosciences, 2018, 15, 4003-4018.	3.3	11
58	The multi-assumption architecture and testbed (MAAT v1.0): R code for generating ensembles with dynamic model structure and analysis of epistemic uncertainty from multiple sources. Geoscientific Model Development, 2018, 11, 3159-3185.	3.6	13
59	Applying the Concept of Ecohydrological Equilibrium to Predict Steady State Leaf Area Index. Journal of Advances in Modeling Earth Systems, 2018, 10, 1740-1758.	3.8	24
60	Evaluating CMIP5 Model Agreement for Multiple Drought Metrics. Journal of Hydrometeorology, 2018, 19, 969-988.	1.9	59
61	Evaluating the Contribution of Landâ€Atmosphere Coupling to Heat Extremes in CMIP5 Models. Geophysical Research Letters, 2018, 45, 9003-9012.	4.0	50
62	Challenging terrestrial biosphere models with data from the longâ€ŧerm multifactor Prairie Heating and <scp>CO</scp> ₂ Enrichment experiment. Global Change Biology, 2017, 23, 3623-3645.	9.5	42
63	Comment on "Mycorrhizal association as a primary control of the CO ₂ fertilization effect― Science, 2017, 355, 358-358.	12.6	16
64	How do leaf and ecosystem measures of waterâ€use efficiency compare?. New Phytologist, 2017, 216, 758-770.	7.3	156
65	Gross primary production responses to warming, elevated <scp>CO</scp> ₂ , and irrigation: quantifying the drivers of ecosystem physiology in a semiarid grassland. Global Change Biology, 2017, 23, 3092-3106.	9.5	43
66	The impact of alternative traitâ€scaling hypotheses for the maximum photosynthetic carboxylation rate (<i>V</i> _{cmax}) on global gross primary production. New Phytologist, 2017, 215, 1370-1386.	7.3	126
67	FluxnetLSM R package (v1.0): a community tool for processing FLUXNET data for use in land surface modelling. Geoscientific Model Development, 2017, 10, 3379-3390.	3.6	14
68	ldeas and perspectives: how coupled is the vegetation to the boundary layer?. Biogeosciences, 2017, 14, 4435-4453.	3.3	57
69	Challenges and opportunities in land surface modelling of savanna ecosystems. Biogeosciences, 2017, 14, 4711-4732.	3.3	45
70	A model inter-comparison study to examine limiting factors in modelling Australian tropical savannas. Biogeosciences, 2016, 13, 3245-3265.	3.3	32
71	Land surface models systematically overestimate the intensity, duration and magnitude of seasonal-scale evaporative droughts. Environmental Research Letters, 2016, 11, 104012.	5.2	88
72	Modelling evapotranspiration during precipitation deficits: identifying critical processes in a land surface model. Hydrology and Earth System Sciences, 2016, 20, 2403-2419.	4.9	33

#	Article	IF	CITATIONS
73	Model–data synthesis for the next generation of forest freeâ€air <scp>CO</scp> ₂ enrichment (<scp>FACE</scp>) experiments. New Phytologist, 2016, 209, 17-28.	7.3	178
74	Satellite based estimates underestimate the effect of CO2 fertilization on net primary productivity. Nature Climate Change, 2016, 6, 892-893.	18.8	69
75	New developments in the effort to model ecosystems under water stress. New Phytologist, 2016, 212, 5-7.	7.3	28
76	Impact of the representation of stomatal conductance on model projections of heatwave intensity. Scientific Reports, 2016, 6, 23418.	3.3	68
77	Using models to guide field experiments: <i>a priori</i> predictions for the <scp>CO</scp> ₂ response of a nutrient―and waterâ€limited native Eucalypt woodland. Global Change Biology, 2016, 22, 2834-2851.	9.5	77
78	A test of the †oneâ€point method' for estimating maximum carboxylation capacity from fieldâ€measured, lightâ€saturated photosynthesis. New Phytologist, 2016, 210, 1130-1144.	7.3	159
79	Predicting longâ€ŧerm carbon sequestration in response to CO ₂ enrichment: How and why do current ecosystem models differ?. Global Biogeochemical Cycles, 2015, 29, 476-495.	4.9	99
80	Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe. Biogeosciences, 2015, 12, 7503-7518.	3.3	73
81	Implementation of an optimal stomatal conductance scheme in the Australian Community Climate Earth Systems Simulator (ACCESS1.3b). Geoscientific Model Development, 2015, 8, 3877-3889.	3.6	51
82	Using ecosystem experiments to improve vegetation models. Nature Climate Change, 2015, 5, 528-534.	18.8	249
83	A test of an optimal stomatal conductance scheme within the CABLE land surface model. Geoscientific Model Development, 2015, 8, 431-452.	3.6	156
84	Where does the carbon go? A model–data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest freeâ€air CO ₂ enrichment sites. New Phytologist, 2014, 203, 883-899.	7.3	263
85	Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate <scp>F</scp> reeâ€ <scp>A</scp> ir <scp>CO</scp> ₂ <scp> E</scp> nrichment studies. New Phytologist, 2014, 202, 803-822.	7.3	378
86	Comprehensive ecosystem modelâ€data synthesis using multiple data sets at two temperate forest freeâ€air CO ₂ enrichment experiments: Model performance at ambient CO ₂ concentration. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 937-964.	3.0	95
87	Carbon dioxide and water use in forests. Nature, 2013, 499, 287-289.	27.8	22
88	Biochemical photosynthetic responses to temperature: how do interspecific differences compare with seasonal shifts?. Tree Physiology, 2013, 33, 793-806.	3.1	39
89	The optimal stomatal response to atmospheric CO2 concentration: Alternative solutions, alternative interpretations. Agricultural and Forest Meteorology, 2013, 182-183, 200-203.	4.8	65
90	Forest water use and water use efficiency at elevated <scp><scp>CO₂</scp></scp> : a modelâ€data intercomparison at two contrasting temperate forest <scp>FACE</scp> sites. Global Change Biology, 2013, 19, 1759-1779.	9.5	314

#	Article	IF	CITATIONS
91	Quantifying Land Surface Temperature Variability for Two Sahelian Mesoscale Regions during the Wet Season. Journal of Hydrometeorology, 2013, 14, 1605-1619.	1.9	19
92	RAMI4PILPS: An intercomparison of formulations for the partitioning of solar radiation in land surface models. Journal of Geophysical Research, 2011, 116, .	3.3	63
93	An assessment of the MODIS collection 5 leaf area index product for a region of mixed coniferous forest. Remote Sensing of Environment, 2011, 115, 767-780.	11.0	173
94	Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nature Geoscience, 2011, 4, 430-433.	12.9	240
95	Assimilating canopy reflectance data into an ecosystem model with an Ensemble Kalman Filter. Remote Sensing of Environment, 2008, 112, 1347-1364.	11.0	123
96	Assimilating Earth Observation Data into Land Surface Models. , 2008, , .		0
97	Estimating the Spatial Exchange of Carbon through the Assimilation of Earth Observation Derived Products using an Ensemble Kalman Filter. , 2008, , .		0
98	Assimilating MODIS reflectance data into an ecosystem model to improve estimates of terrestrial carbon flux: recent progress. , 2007, , .		1