## Vitaly V Chaban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4023485/publications.pdf Version: 2024-02-01



VITALV V CHARAN

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A new force field model for the simulation of transport properties of imidazolium-based ionic<br>liquids. Physical Chemistry Chemical Physics, 2011, 13, 7910.                                 | 2.8  | 168       |
| 2  | Polarizability versus mobility: atomistic force field for ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 16055.                                                                 | 2.8  | 149       |
| 3  | Acetonitrile Boosts Conductivity of Imidazolium Ionic Liquids. Journal of Physical Chemistry B, 2012, 116, 7719-7727.                                                                          | 2.6  | 136       |
| 4  | Water Boiling Inside Carbon Nanotubes: Toward Efficient Drug Release. ACS Nano, 2011, 5, 5647-5655.                                                                                            | 14.6 | 108       |
| 5  | Ionic and Molecular Liquids: Working Together for Robust Engineering. Journal of Physical Chemistry<br>Letters, 2013, 4, 1423-1431.                                                            | 4.6  | 103       |
| 6  | Covalent Linking Greatly Enhances Photoinduced Electron Transfer in Fullerene-Quantum Dot<br>Nanocomposites: Time-Domain Ab Initio Study. Journal of Physical Chemistry Letters, 2013, 4, 1-6. | 4.6  | 90        |
| 7  | Conductometric study of binary systems based on ionic liquids and acetonitrile in a wide concentration range. Electrochimica Acta, 2013, 105, 188-199.                                         | 5.2  | 77        |
| 8  | Heat-Driven Release of a Drug Molecule from Carbon Nanotubes: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2010, 114, 13481-13486.                                             | 2.6  | 70        |
| 9  | Nanoscale Carbon Greatly Enhances Mobility of a Highly Viscous Ionic Liquid. ACS Nano, 2014, 8, 8190-8197.                                                                                     | 14.6 | 65        |
| 10 | Confinement by Carbon Nanotubes Drastically Alters the Boiling and Critical Behavior of Water Droplets. ACS Nano, 2012, 6, 2766-2773.                                                          | 14.6 | 59        |
| 11 | A new force field model of 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid and acetonitrile mixtures. Physical Chemistry Chemical Physics, 2011, 13, 19345.                         | 2.8  | 57        |
| 12 | Systematic Refinement of Canongia Lopes–Pádua Force Field for Pyrrolidinium-Based Ionic Liquids.<br>Journal of Physical Chemistry B, 2015, 119, 6242-6249.                                     | 2.6  | 55        |
| 13 | Cellulose based poly(ionic liquids): Tuning cation-anion interaction to improve carbon dioxide sorption. Fuel, 2018, 211, 76-86.                                                               | 6.4  | 54        |
| 14 | Rationalizing the role of the anion in CO <sub>2</sub> capture and conversion using imidazolium-based ionic liquid modified mesoporous silica. RSC Advances, 2015, 5, 64220-64227.             | 3.6  | 53        |
| 15 | A Highly Viscous Imidazolium Ionic Liquid inside Carbon Nanotubes. Journal of Physical Chemistry B, 2014, 118, 6234-6240.                                                                      | 2.6  | 50        |
| 16 | Atomistic Force Field for Pyridinium-Based Ionic Liquids: Reliable Transport Properties. Journal of<br>Physical Chemistry B, 2014, 118, 10716-10724.                                           | 2.6  | 50        |
| 17 | Nitrogen–Nitrogen Bonds Undermine Stability of N-Doped Graphene. Journal of the American Chemical Society, 2015, 137, 11688-11694                                                              | 13.7 | 49        |
| 18 | How Toxic Are Ionic Liquid/Acetonitrile Mixtures?. Journal of Physical Chemistry Letters, 2011, 2, 2499-2503.                                                                                  | 4.6  | 45        |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The scaled-charge additive force field for amino acid based ionic liquids. Chemical Physics Letters, 2014, 616-617, 205-211.                                                                          | 2.6 | 41        |
| 20 | Does the Like Dissolves Like Rule Hold for Fullerene and Ionic Liquids?. Journal of Solution Chemistry, 2014, 43, 1019-1031.                                                                          | 1.2 | 40        |
| 21 | New cellulose based ionic compounds as low-cost sorbents for CO2 capture. Fuel Processing Technology, 2016, 149, 131-138.                                                                             | 7.2 | 39        |
| 22 | Imidazolium Ionic Liquid Helps to Disperse Fullerenes in Water. Journal of Physical Chemistry Letters, 2014, 5, 1795-1800.                                                                            | 4.6 | 38        |
| 23 | CO2 capture: Tuning cation-anion interaction in urethane based poly(ionic liquids). Polymer, 2016, 102, 199-208.                                                                                      | 3.8 | 38        |
| 24 | Enhanced stability of the model miniâ€protein in amino acid ionic liquids and their aqueous solutions.<br>Journal of Computational Chemistry, 2015, 36, 2044-2051.                                    | 3.3 | 35        |
| 25 | Anticorrosion Protection by Amine–lonic Liquid Mixtures: Experiments and Simulations. Journal of<br>Chemical & Engineering Data, 2016, 61, 1803-1810.                                                 | 1.9 | 35        |
| 26 | Ionic Vapor: What Does It Consist Of?. Journal of Physical Chemistry Letters, 2012, 3, 1657-1662.                                                                                                     | 4.6 | 32        |
| 27 | Competitive solvation of the imidazolium cation by water and methanol. Chemical Physics Letters, 2015, 623, 76-81.                                                                                    | 2.6 | 31        |
| 28 | Boron doping of graphene–pushing the limit. Nanoscale, 2016, 8, 15521-15528.                                                                                                                          | 5.6 | 31        |
| 29 | Exfoliation of Graphene in Ionic Liquids: Pyridinium versus Pyrrolidinium. Journal of Physical Chemistry C, 2017, 121, 911-917.                                                                       | 3.1 | 30        |
| 30 | Ionic liquids composed of linear amphiphilic anions: Synthesis, physicochemical characterization, hydrophilicity and interaction with carbon dioxide. Journal of Molecular Liquids, 2017, 241, 64-73. | 4.9 | 29        |
| 31 | Solvation of the fluorine containing anions and their lithium salts in propylene carbonate and dimethoxyethane. Journal of Molecular Modeling, 2015, 21, 172.                                         | 1.8 | 28        |
| 32 | The thiocyanate anion is a primary driver of carbon dioxide capture by ionic liquids. Chemical Physics<br>Letters, 2015, 618, 89-93.                                                                  | 2.6 | 28        |
| 33 | Competitive solvation of (bis)(trifluoromethanesulfonyl)imide anion by acetonitrile and water.<br>Chemical Physics Letters, 2014, 613, 90-94.                                                         | 2.6 | 27        |
| 34 | Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake.<br>Scientific Reports, 2015, 5, 8842.                                                             | 3.3 | 27        |
| 35 | Graphene exfoliation in ionic liquids: unified methodology. RSC Advances, 2015, 5, 81229-81234.                                                                                                       | 3.6 | 26        |
| 36 | Graphene/ionic liquid ultracapacitors: does ionic size correlate with energy storage performance?.<br>New Journal of Chemistry, 2018, 42, 18409-18417.                                                | 2.8 | 26        |

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Distribution of Neutral Lipids in the Lipid Droplet Core. Journal of Physical Chemistry B, 2014, 118, 11145-11151.                                                                                              | 2.6  | 24        |
| 38 | Hydrogen fluoride capture by imidazolium acetate ionic liquid. Chemical Physics Letters, 2015, 625, 110-115.                                                                                                    | 2.6  | 24        |
| 39 | The tricyanomethanide anion favors low viscosity of the pure ionic liquid and its aqueous mixtures.<br>Physical Chemistry Chemical Physics, 2015, 17, 31839-31849.                                              | 2.8  | 24        |
| 40 | Ionic Clusters vs Shear Viscosity in Aqueous Amino Acid Ionic Liquids. Journal of Physical Chemistry B, 2015, 119, 3824-3828.                                                                                   | 2.6  | 23        |
| 41 | Synergistic Amination of Graphene: Molecular Dynamics and Thermodynamics. Journal of Physical Chemistry Letters, 2015, 6, 4397-4403.                                                                            | 4.6  | 23        |
| 42 | Lipid Structure in Triolein Lipid Droplets. Journal of Physical Chemistry B, 2014, 118, 10335-10340.                                                                                                            | 2.6  | 22        |
| 43 | Global minimum search via annealing: Nanoscale gold clusters. Chemical Physics Letters, 2015, 622,<br>75-79.                                                                                                    | 2.6  | 21        |
| 44 | Energy Storage in Cubane Derivatives and Their Real-Time Decomposition: Computational Molecular Dynamics and Thermodynamics. ACS Energy Letters, 2016, 1, 189-194.                                              | 17.4 | 21        |
| 45 | Binary mixtures of novel sulfoxides and water: intermolecular structure, dynamic properties,<br>thermodynamics, and cluster analysis. Physical Chemistry Chemical Physics, 2018, 20, 23754-23761.               | 2.8  | 20        |
| 46 | Force field development and simulations of senior dialkyl sulfoxides. Physical Chemistry Chemical<br>Physics, 2016, 18, 10507-10515.                                                                            | 2.8  | 19        |
| 47 | Annealing relaxation of ultrasmall gold nanostructures. Chemical Physics Letters, 2015, 618, 46-50.                                                                                                             | 2.6  | 17        |
| 48 | Computationally Efficient Prediction of Ionic Liquid Properties. Journal of Physical Chemistry Letters, 2014, 5, 1973-1977.                                                                                     | 4.6  | 16        |
| 49 | Electronic and thermodynamic properties of the amino- and carboxamido-functionalized C-60-based fullerenes: Towards non-volatile carbon dioxide scavengers. Journal of Chemical Thermodynamics, 2018, 116, 1-6. | 2.0  | 15        |
| 50 | DEVELOPMENT OF INEXPENSIVE CELLULOSE-BASED SORBENTS FOR CARBON DIOXIDE. Brazilian Journal of Chemical Engineering, 2019, 36, 511-521.                                                                           | 1.3  | 15        |
| 51 | Protein remains stable at unusually high temperatures when solvated in aqueous mixtures of amino acid based ionic liquids. Journal of Molecular Modeling, 2016, 22, 258.                                        | 1.8  | 14        |
| 52 | Performance of supported metal catalysts in the dimethyl carbonate production by direct synthesis using CO2 and methanol. Journal of CO2 Utilization, 2021, 53, 101721.                                         | 6.8  | 14        |
| 53 | Novel Ultrathin Membranes Composed of Organic Ions. Journal of Physical Chemistry Letters, 2013, 4, 1216-1220.                                                                                                  | 4.6  | 13        |
| 54 | Polarization versus Temperature in Pyridinium Ionic Liquids. Journal of Physical Chemistry B, 2014, 118, 13940-13945.                                                                                           | 2.6  | 13        |

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The force field for imidazolium-based ionic liquids: Novel anions with polar residues. Chemical Physics Letters, 2015, 633, 132-138.                                                     | 2.6 | 13        |
| 56 | Amino-functionalized ionic liquids as carbon dioxide scavengers. Ab initio thermodynamics for chemisorption. Journal of Chemical Thermodynamics, 2016, 103, 1-6.                         | 2.0 | 13        |
| 57 | Structure and Supersaturation of Highly Concentrated Solutions of Buckyball in<br>1-Butyl-3-Methylimidazolium Tetrafluoroborate. Journal of Physical Chemistry B, 2014, 118, 7376-7382.  | 2.6 | 12        |
| 58 | Water Phase Diagram Is Significantly Altered by Imidazolium Ionic Liquid. Journal of Physical Chemistry Letters, 2014, 5, 1623-1627.                                                     | 4.6 | 11        |
| 59 | Electrostatic charge confinement using bulky tetraoctylammonium cation and four anions. Chemical Physics Letters, 2016, 649, 44-47.                                                      | 2.6 | 11        |
| 60 | Amination of Five Families of Room-Temperature Ionic Liquids: Computational Thermodynamics and<br>Vibrational Spectroscopy. Journal of Chemical & Engineering Data, 2016, 61, 1917-1923. | 1.9 | 11        |
| 61 | Peculiar Aqueous Solubility Trend in Cucurbiturils Unraveled by Atomistic Simulations. Journal of<br>Physical Chemistry B, 2016, 120, 7511-7516.                                         | 2.6 | 11        |
| 62 | Ammonium-, phosphonium- and sulfonium-based 2-cyanopyrrolidine ionic liquids for carbon dioxide<br>fixation. Physical Chemistry Chemical Physics, 2022, 24, 9659-9672.                   | 2.8 | 11        |
| 63 | Carbon Dioxide Chemisorption by Ammonium and Phosphonium Ionic Liquids: Quantum Chemistry<br>Calculations. Journal of Physical Chemistry B, 2022, 126, 5497-5506.                        | 2.6 | 10        |
| 64 | Are Fluorination and Chlorination of Morpholinium-Based Ionic Liquids Favorable?. Journal of Physical Chemistry B, 2015, 119, 9920-9924.                                                 | 2.6 | 9         |
| 65 | Understanding weakly coordinating anions: tetrakis(pentafluorophenyl)borate paired with inorganic<br>and organic cations. Journal of Molecular Modeling, 2017, 23, 86.                   | 1.8 | 9         |
| 66 | Structure, thermodynamic and electronic properties of carbon-nitrogen cubanes and protonated polynitrogen cations. Journal of Molecular Structure, 2017, 1149, 828-834.                  | 3.6 | 9         |
| 67 | A Weakly Coordinating Anion Substantially Enhances Carbon Dioxide Fixation by Calcium and Barium Salts. Energy & amp; Fuels, 2017, 31, 9668-9674.                                        | 5.1 | 9         |
| 68 | Mutual miscibility of diethyl sulfoxide and acetonitrile: Fundamental origin. Journal of Molecular<br>Liquids, 2022, 349, 118110.                                                        | 4.9 | 9         |
| 69 | A new model of chemical bonding in ionic melts. Journal of Chemical Physics, 2012, 136, 164112.                                                                                          | 3.0 | 8         |
| 70 | Sodium-ion electrolytes based on ionic liquids: a role of cation-anion hydrogen bonding. Journal of<br>Molecular Modeling, 2016, 22, 172.                                                | 1.8 | 8         |
| 71 | Epoxy resinâ $\in$ cement paste composite for wellbores: Evaluation of chemical degradation fostered carbon dioxide. , 2017, 7, 1065-1079.                                               |     | 8         |
| 72 | The Phenomenological Account for Electronic Polarization in Ionic Liquid. ECS Transactions, 2010, 33, 43-55.                                                                             | 0.5 | 7         |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Triethylsulfonium-based ionic liquids enforce lithium salt electrolytes. Physical Chemistry Chemical<br>Physics, 2022, 24, 9418-9431.                                                                                                     | 2.8 | 7         |
| 74 | Diethyl sulfoxide as a novel neutral ligand in the platinum complex compound. Computational and Theoretical Chemistry, 2022, 1211, 113683.                                                                                                | 2.5 | 7         |
| 75 | Vapor-liquid interface properties of diethyl sulfoxide-water and ethyl methyl sulfoxide-water<br>mixtures: Molecular dynamics simulations and quantum-chemical calculations. Fluid Phase Equilibria,<br>2016, 427, 180-186.               | 2.5 | 6         |
| 76 | Transport Properties and Ion Aggregation in Mixtures of Room Temperature Ionic Liquids with Aprotic<br>Dipolar Solvents. Springer Proceedings in Physics, 2018, , 67-109.                                                                 | 0.2 | 6         |
| 77 | Mixtures of Diethyl Sulfoxide and Methanol: Structure and Thermodynamics. Journal of Solution Chemistry, 2022, 51, 788-801.                                                                                                               | 1.2 | 6         |
| 78 | Vapor–liquid equilibria in the binary mixtures of N-butylpyridinium hexafluorophophate and<br>bis(trifluoromethanesulfonyl)imide ionic liquids with acetone: Molecular dynamics simulations.<br>Fluid Phase Equilibria, 2016, 419, 75-83. | 2.5 | 4         |
| 79 | Solvation of the morpholinium cation in acetonitrile. Effect of an anion. Journal of Molecular<br>Modeling, 2016, 22, 26.                                                                                                                 | 1.8 | 4         |
| 80 | lonization of cucurbiturils as a pathway to more stable host–guest complexes. Computational and<br>Theoretical Chemistry, 2016, 1083, 7-11.                                                                                               | 2.5 | 4         |
| 81 | Halogenation of imidazolium-based ionic liquids: Thermodynamic perspective. Journal of Chemical<br>Thermodynamics, 2016, 98, 81-85.                                                                                                       | 2.0 | 2         |