## Xiaojun Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4023337/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Chitosan and polyhexamethylene guanidine dual-functionalized cotton gauze as a versatile bandage for the management of chronic wounds. Carbohydrate Polymers, 2022, 282, 119130.                                                                           | 10.2 | 26        |
| 2  | An all-in-one CO gas therapy-based hydrogel dressing with sustained insulin release, anti-oxidative<br>stress, antibacterial, and anti-inflammatory capabilities for infected diabetic wounds. Acta<br>Biomaterialia, 2022, 146, 49-65.                    | 8.3  | 42        |
| 3  | An Alternating Irradiation Strategyâ€Driven Combination Therapy of PDT and RNAi for Highly Efficient<br>Inhibition of Tumor Growth and Metastasis. Advanced Healthcare Materials, 2021, 10, e2001850.                                                      | 7.6  | 16        |
| 4  | Chemical constituents of radix <scp><i>Actinidia chinensis</i></scp> planch by UPLC–QTOF–MS.<br>Biomedical Chromatography, 2021, 35, e5103.                                                                                                                | 1.7  | 17        |
| 5  | A versatile chitosan nanogel capable of generating AgNPs in-situ and long-acting slow-release of Ag+<br>for highly efficient antibacterial. Carbohydrate Polymers, 2021, 257, 117636.                                                                      | 10.2 | 39        |
| 6  | <scp>L</scp> â€Argâ€Rich Amphiphilic Dendritic Peptide as a Versatile NO Donor for NO/Photodynamic<br>Synergistic Treatment of Bacterial Infections and Promoting Wound Healing. Small, 2021, 17, e2101495.                                                | 10.0 | 73        |
| 7  | Photodynamic and photothermal co-driven CO-enhanced multi-mode synergistic antibacterial<br>nanoplatform to effectively fight against biofilm infections. Chemical Engineering Journal, 2021, 426,<br>131919.                                              | 12.7 | 63        |
| 8  | A multifunctional anti-inflammatory drug that can specifically target activated macrophages,<br>massively deplete intracellular H2O2, and produce large amounts CO for a highly efficient treatment<br>of osteoarthritis. Biomaterials, 2020, 255, 120155. | 11.4 | 63        |
| 9  | Development of an UPLC–MS/MS assay to determine psoralidin in rat plasma and its application in a pharmacokinetic study after intragastric administration. Acta Chromatographica, 2020, 32, 215-218.                                                       | 1.3  | 4         |
| 10 | Ultra-efficient Antibacterial System Based on Photodynamic Therapy and CO Gas Therapy for<br>Synergistic Antibacterial and Ablation Biofilms. ACS Applied Materials & Interfaces, 2020, 12,<br>22479-22491.                                                | 8.0  | 122       |
| 11 | A Rapid UPLC-MS Method for Quantification of Gomisin D in Rat Plasma and Its Application to a<br>Pharmacokinetic and Bioavailability Study. Molecules, 2019, 24, 1403.                                                                                     | 3.8  | 5         |
| 12 | Bionic Poly(γâ€Glutamic Acid) Electrospun Fibrous Scaffolds for Preventing Hypertrophic Scars.<br>Advanced Healthcare Materials, 2019, 8, e1900123.                                                                                                        | 7.6  | 51        |
| 13 | Peptide dendrimer-crosslinked inorganic-organic hybrid supramolecular hydrogel for efficient<br>anti-biofouling. Chinese Chemical Letters, 2018, 29, 501-504.                                                                                              | 9.0  | 15        |
| 14 | PDTâ€Driven Highly Efficient Intracellular Delivery and Controlled Release of CO in Combination with<br>Sufficient Singlet Oxygen Production for Synergistic Anticancer Therapy. Advanced Functional<br>Materials, 2018, 28, 1804324.                      | 14.9 | 108       |
| 15 | Highly Efficient and Safe Delivery of VEGF siRNA by Bioreducible Fluorinated Peptide Dendrimers for Cancer Therapy. ACS Applied Materials & amp; Interfaces, 2017, 9, 9402-9415.                                                                           | 8.0  | 57        |
| 16 | A facile one-step gelation approach simultaneously combining physical and chemical cross-linking for the preparation of injectable hydrogels. Journal of Materials Chemistry B, 2017, 5, 3145-3153.                                                        | 5.8  | 6         |
| 17 | Correction: Reversible PEGylation and Schiff-base linked imidazole modification of polylysine for high-performance gene delivery. Journal of Materials Chemistry B, 2017, 5, 181-181.                                                                      | 5.8  | 0         |
| 18 | Polyethylene glycol–poly(ε-benzyloxycarbonyl-L-lysine)-conjugated VEGF siRNA<br>for antiangiogenic gene therapy in hepatocellular carcinoma. International Journal of Nanomedicine,<br>2017, Volume 12, 3591-3603.                                         | 6.7  | 25        |

XIAOJUN CAI

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Synthesis of amphipathic superparamagnetic Fe <sub>3</sub> O <sub>4</sub> Janus nanoparticles via a moderate strategy and their controllable self-assembly. RSC Advances, 2016, 6, 40450-40458.                               | 3.6  | 22        |
| 20 | Pharmacokinetics and pharmacodynamics study of rhein treating renal fibrosis based on metabonomics approach. Phytomedicine, 2016, 23, 1661-1670.                                                                              | 5.3  | 14        |
| 21 | Bioreducible Fluorinated Peptide Dendrimers Capable of Circumventing Various Physiological<br>Barriers for Highly Efficient and Safe Gene Delivery. ACS Applied Materials & Interfaces, 2016, 8,<br>5821-5832.                | 8.0  | 99        |
| 22 | The study on serum and urine of renal interstitial fibrosis rats induced by unilateral ureteral obstruction based on metabonomics and network analysis methods. Analytical and Bioanalytical Chemistry, 2016, 408, 2607-2619. | 3.7  | 17        |
| 23 | Disulfide-Bridged Cleavable PEGylation of Poly-l-Lysine for SiRNA Delivery. Methods in Molecular<br>Biology, 2016, 1364, 49-61.                                                                                               | 0.9  | 9         |
| 24 | Reversible PEGylation and Schiff-base linked imidazole modification of polylysine for high-performance gene delivery. Journal of Materials Chemistry B, 2015, 3, 1507-1517.                                                   | 5.8  | 20        |
| 25 | Gene Therapy: Suppression of VEGF by Reversible-PEGylated Histidylated Polylysine in Cancer Therapy<br>(Adv. Healthcare Mater. 11/2014). Advanced Healthcare Materials, 2014, 3, 1694-1694.                                   | 7.6  | 0         |
| 26 | Influence of reduction-sensitive diselenide bonds and disulfide bonds on oligoethylenimine conjugates for gene delivery. Journal of Materials Chemistry B, 2014, 2, 7210-7221.                                                | 5.8  | 53        |
| 27 | Suppression of VEGF by Reversibleâ€PEGylated Histidylated Polylysine in Cancer Therapy. Advanced<br>Healthcare Materials, 2014, 3, 1818-1827.                                                                                 | 7.6  | 19        |
| 28 | Biocompatible polyethylenimine-graft-dextran catiomer for highly efficient gene delivery assisted by a<br>nuclear targeting ligand. Polymer Chemistry, 2013, 4, 2528.                                                         | 3.9  | 36        |
| 29 | Effects of spatial distribution of the nuclear localization sequence on gene transfection in catiomer–gene polyplexes. Journal of Materials Chemistry B, 2013, 1, 1712.                                                       | 5.8  | 11        |
| 30 | A Versatile Multicomponent Assembly via β yclodextrin Host–Guest Chemistry on Graphene for<br>Biomedical Applications. Small, 2013, 9, 446-456.                                                                               | 10.0 | 73        |
| 31 | Effective Gene Delivery Using Stimulus-Responsive Catiomer Designed with Redox-Sensitive Disulfide and Acid-Labile Imine Linkers. Biomacromolecules, 2012, 13, 1024-1034.                                                     | 5.4  | 113       |
| 32 | Mesoporous Silica Nanoparticles Capped with Disulfide-Linked PEG Gatekeepers for<br>Glutathione-Mediated Controlled Release. ACS Applied Materials & Interfaces, 2012, 4, 3177-3183.                                          | 8.0  | 175       |
| 33 | Engineered polyethylenimine/graphene oxide nanocomposite for nuclear localized gene delivery.<br>Polymer Chemistry, 2012, 3, 2561.                                                                                            | 3.9  | 104       |
| 34 | Engineered Redoxâ€Responsive PEG Detachment Mechanism in PEGylated Nanoâ€Graphene Oxide for<br>Intracellular Drug Delivery. Small, 2012, 8, 760-769.                                                                          | 10.0 | 308       |
| 35 | Galactose Decorated Acid-Labile Nanoparticles Encapsulating Quantum Dots for Enhanced Cellular<br>Uptake and Subcellular Localization. Pharmaceutical Research, 2012, 29, 2167-2179.                                          | 3.5  | 17        |
| 36 | Promoted Transfection Efficiency of pDNA Polyplexes-Loaded Biodegradable Microparticles<br>Containing Acid-Labile Segments and Galactose Grafts. Pharmaceutical Research, 2012, 29, 471-482.                                  | 3.5  | 12        |

| #  | Article                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Glutathione-mediated shedding of PEG layers based on disulfide-linked catiomers for DNA delivery.<br>Journal of Materials Chemistry, 2011, 21, 14639.     | 6.7 | 54        |
| 38 | The photoluminescence enhancement of electrospun poly(ethylene oxide) fibers with CdS and polyaniline inoculations. Acta Materialia, 2008, 56, 5775-5782. | 7.9 | 19        |