
Li-Chia Tien

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4022920/publications.pdf Version: 2024-02-01

Ιι-Ομιλ Τιένι

#	Article	IF	CITATIONS
1	Morphology-Controlled Vapor Phase Growth and Characterization of One-Dimensional GaTe Nanowires and Two-Dimensional Nanosheets for Potential Visible-Light Active Photocatalysts. Nanomaterials, 2021, 11, 778.	4.1	6
2	Broadband photodetectors based on layered 1D GaTe nanowires and 2D GaTe nanosheets. Journal of Alloys and Compounds, 2021, 876, 160195.	5.5	10
3	Selective synthesis of α-Bi2O3/rGO and β-Bi2O3/rGO heterostructures as efficient visible-light-driven photocatalysts. Ceramics International, 2019, 45, 15334-15342.	4.8	12
4	Synthesis, optical characterization, and environmental applications of β-Ga2O3 nanowires. , 2019, , 67-90.		8
5	Single Zn2GeO4 nanowire high-performance broadband photodetector. Journal of Applied Physics, 2018, 124, .	2.5	8
6	Facile synthesis of Bi 25 VO 40 nanowires for visible-light-driven photocatalysts. Materials Letters, 2017, 202, 73-77.	2.6	1
7	Optical Characterization of Structural Quality in the Formation of In ₂ O ₃ Thin-Film Nanostructures. Journal of Physical Chemistry C, 2016, 120, 21983-21989.	3.1	16
8	Observation of near-band-edge photoluminescence and UV photoresponse in near-stoichiometric Zn ₂ SnO ₄ nanowires. Materials Research Express, 2016, 3, 066201.	1.6	4
9	Type-II α-In ₂ S ₃ /In ₂ O ₃ nanowire heterostructures: evidence of enhanced photo-induced charge separation efficiency. RSC Advances, 2016, 6, 12561-12570.	3.6	27
10	Synthesis of Bi2O3 nanocones over large areas by magnetron sputtering. Surface and Coatings Technology, 2015, 265, 1-6.	4.8	9
11	Growth of Bi ₂ O ₃ nanocones over large areas by magnetron sputtering. Proceedings of SPIE, 2015, , .	0.8	0
12	Defect-induced ferromagnetism in undoped In 2 O 3 nanowires. Materials Research Bulletin, 2014, 60, 690-694.	5.2	30
13	Nucleation control and growth mechanism of pure α-Bi2O3 nanowires. Applied Surface Science, 2014, 290, 131-136.	6.1	27
14	Direct vapor transport synthesis of ZnGa2O4 nanowires with superior photocatalytic activity. Journal of Alloys and Compounds, 2013, 555, 325-329.	5.5	22
15	Photoconductivities in monocrystalline layered V2O5 nanowires grown by physical vapor deposition. Nanoscale Research Letters, 2013, 8, 443.	5.7	37
16	The study of optical band edge property of bismuth oxide nanowires α-Bi_2O_3. Optics Express, 2013, 21, 11965.	3.4	96
17	Synthesis and characterization of Bi12O17Cl2 nanowires obtained by chlorination of $\hat{I}\pm$ -Bi2O3 nanowires. Materials Letters, 2013, 113, 30-33.	2.6	27
18	Influence of growth ambient on the surface and structural properties of vanadium oxide nanorods. Applied Surface Science, 2013, 274, 64-70.	6.1	17

LI-CHIA TIEN

#	Article	IF	CITATIONS
19	Nitrogen Doping Effect on Optical Property of Gallium Oxide Nanowires. ECS Journal of Solid State Science and Technology, 2012, 1, P78-P81.	1.8	5
20	Effect of surface roughness on nucleation and growth of vanadium pentoxide nanowires. Applied Surface Science, 2012, 258, 3584-3588.	6.1	27
21	Cathodoluminescence and Field-Emission Properties of β-Ga2O3 Nanobelts. Journal of Electronic Materials, 2012, 41, 3056-3061.	2.2	5
22	Direct Optical Observation of Band-Edge Excitons, Band Gap, and Fermi Level in Degenerate Semiconducting Oxide Nanowires In ₂ O ₃ . Journal of Physical Chemistry C, 2011, 115, 25088-25096.	3.1	58
23	Enhanced Photocatalytic Activity in βâ€Ga ₂ O ₃ Nanobelts. Journal of the American Ceramic Society, 2011, 94, 3117-3122.	3.8	63
24	Synthesis of β-Ga2O3 nanowires as a broadband emitter. Applied Physics A: Materials Science and Processing, 2011, 102, 105-108.	2.3	11
25	Thermoreflectance characterization of \hat{l}^2 -Ga_2O_3 thin-film nanostrips. Optics Express, 2010, 18, 16360.	3.4	57
26	Epitaxial growth of transparent tin oxide films on (0001) sapphire by pulsed laser deposition. Materials Research Bulletin, 2009, 44, 6-10.	5.2	36
27	Synthesis and microstructure of vertically aligned ZnO nanowires grown by high-pressure-assisted pulsed-laser deposition. Journal of Materials Science, 2008, 43, 6925-6932.	3.7	80
28	Synthesis and characterization of single crystalline SnO2 nanorods by high-pressure pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2008, 91, 29-32.	2.3	17
29	ZnO and Related Materials for Sensors and Light-Emitting Diodes. Journal of Electronic Materials, 2008, 37, 1426-1432.	2.2	52
30	Modeling and Fabrication of ZnO Nanowire Transistors. IEEE Transactions on Electron Devices, 2008, 55, 3012-3019.	3.0	13
31	ZnO -BASED NANOWIRES. Nano, 2007, 02, 201-211.	1.0	5
32	Wide Bandgap Semiconductor Nanowires for Sensing Applications. ECS Transactions, 2007, 6, 115-126.	0.5	0
33	Wide bandgap nanowire sensors. , 2007, , .		0
34	Getting to the Core of the Problem:  Origin of the Luminescence from (Mg,Zn)O Heterostructured Nanowires. Nano Letters, 2007, 7, 1521-1525.	9.1	16
35	A hydrogen leakage detection system using self-powered wireless hydrogen sensor nodes. Solid-State Electronics, 2007, 51, 1018-1022.	1.4	16
36	Nucleation control for ZnO nanorods grown by catalyst-driven molecular beam epitaxy. Applied Surface Science, 2007, 253, 4620-4625.	6.1	44

LI-CHIA TIEN

#	Article	IF	CITATIONS
37	Detection of hydrogen with SnO2-coated ZnO nanorods. Applied Surface Science, 2007, 253, 4748-4752.	6.1	53
38	Anisotropic x-ray absorption effects in the optical luminescence yield of ZnO nanostructures. Applied Physics Letters, 2006, 89, 093118.	3.3	25
39	Wide Bandgap Semiconductor Nanorod and Thin Film Gas Sensors. Sensors, 2006, 6, 643-666.	3.8	52
40	ZnO spintronics and nanowire devices. Journal of Electronic Materials, 2006, 35, 862-868.	2.2	148
41	UV photoresponse of single ZnO nanowires. Applied Physics A: Materials Science and Processing, 2005, 80, 497-499.	2.3	107
42	Hydrogen and ozone gas sensing using multiple ZnO nanorods. Applied Physics A: Materials Science and Processing, 2005, 80, 1029-1032.	2.3	101
43	Detection of hydrogen at room temperature with catalyst-coated multiple ZnO nanorods. Applied Physics A: Materials Science and Processing, 2005, 81, 1117-1119.	2.3	77
44	Fabrication approaches to ZnO nanowire devices. Journal of Electronic Materials, 2005, 34, 404-408.	2.2	18
45	Cubic (Mg,Zn)O Nanowire Growth Using Catalyst-Driven Molecular Beam Epitaxy. Journal of Materials Research, 2005, 20, 3028-3033.	2.6	5
46	pH measurements with single ZnO nanorods integrated with a microchannel. Applied Physics Letters, 2005, 86, 112105.	3.3	135
47	Room-Temperature Hydrogen-Selective Sensing Using Single Pt-Coated ZnO Nanowires at Microwatt Power Levels. Electrochemical and Solid-State Letters, 2005, 8, G230.	2.2	60
48	Hydrogen-selective sensing at room temperature with ZnO nanorods. Applied Physics Letters, 2005, 86, 243503.	3.3	524
49	Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods. Applied Physics Letters, 2005, 87, 222106.	3.3	262
50	ZnO nanowire growth and devices. Materials Science and Engineering Reports, 2004, 47, 1-47.	31.8	534
51	Ptâ^•ZnO nanowire Schottky diodes. Applied Physics Letters, 2004, 85, 3107-3109.	3.3	129
52	Depletion-mode ZnO nanowire field-effect transistor. Applied Physics Letters, 2004, 85, 2274-2276.	3.3	228
53	Electrical transport properties of single ZnO nanorods. Applied Physics Letters, 2004, 85, 2002-2004.	3.3	146
54	Photoemission study of CaF2 on Si(001)-2×1 during annealing. Solid State Communications, 2003, 125, 459-462.	1.9	10

LI-CHIA TIEN

#	Article	IF	CITATIONS
55	Amorphous-crystalline transition at the Ir/Si(100) interface. Journal of Applied Physics, 2003, 93, 6248-6251.	2.5	Ο
56	Solid state amorphization at the room temperature deposited Ir/Si interface. Journal of Applied Physics, 2002, 91, 1204-1208.	2.5	10
57	Early nucleation on the Si()-2×1 surface. Surface Science, 2002, 514, 327-331.	1.9	15