List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4022731/publications.pdf Version: 2024-02-01

ΗΛΙΙΙΝΙ ΥΠ

#	Article	IF	CITATIONS
1	Light-controllable charge-reversal nanoparticles with polyinosinic-polycytidylic acid for enhancing immunotherapy of triple negative breast cancer. Acta Pharmaceutica Sinica B, 2022, 12, 353-363.	5.7	27
2	Bispecific prodrug nanoparticles circumventing multiple immune resistance mechanisms for promoting cancer immunotherapy. Acta Pharmaceutica Sinica B, 2022, 12, 2695-2709.	5.7	31
3	Long wavelength emission fluorescent probe for highly selective detection of cysteine in living cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 264, 120247.	2.0	7
4	Delivery strategies for immune checkpoint blockade. , 2022, , 1-29.		0
5	Nanomedicine Strategies to Circumvent Intratumor Extracellular Matrix Barriers for Cancer Therapy. Advanced Healthcare Materials, 2022, 11, e2101428.	3.9	27
6	Amplifying antitumor T cell immunity with versatile drug delivery systems for personalized cancer immunotherapy. Medicine in Drug Discovery, 2022, 13, 100116.	2.3	1
7	Bioinspired Lipoproteins of Furoxans–Oxaliplatin Remodel Physical Barriers in Tumor to Potentiate T ell Infiltration. Advanced Materials, 2022, 34, e2110614.	11.1	19
8	Bioinspired magnetic nanocomplexes amplifying STING activation of tumor-associated macrophages to potentiate cancer immunotherapy. Nano Today, 2022, 43, 101400.	6.2	23
9	Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharmaceutica Sinica B, 2022, 12, 3028-3048.	5.7	103
10	Reactive Glycolysis Metaboliteâ€Activatable Nanotheranostics for NIRâ€II Fluorescence Imagingâ€Guided Phototherapy of Cancer. Advanced Functional Materials, 2022, 32, .	7.8	32
11	Copackaging photosensitizer and PD-L1 siRNA in a nucleic acid nanogel for synergistic cancer photoimmunotherapy. Science Advances, 2022, 8, eabn2941.	4.7	50
12	A bispecific nanomodulator to potentiate photothermal cancer immunotherapy. Nano Today, 2022, 44, 101466.	6.2	24
13	Strategies of engineering nanomedicines for tumor retention. Journal of Controlled Release, 2022, 346, 193-211.	4.8	10
14	Stable Metal–Organic Frameworks for Fluorescent Detection of Tetracycline Antibiotics. Inorganic Chemistry, 2022, 61, 8015-8021.	1.9	44
15	Engineering Bioinspired Nanomedicines to Mitigate the Resistance to Cancer Immunotherapy. Accounts of Materials Research, 2022, 3, 697-708.	5.9	14
16	Construction and application of base-stable MOFs: a critical review. Chemical Society Reviews, 2022, 51, 6417-6441.	18.7	147
17	Walking Dead Tumor Cells for Targeted Drug Delivery Against Lung Metastasis of Tripleâ€Negative Breast Cancer. Advanced Materials, 2022, 34,	11.1	34
18	Overcoming immune resistance by sequential prodrug nanovesicles for promoting chemoimmunotherapy of cancer. Nano Today, 2021, 36, 101025.	6.2	45

#	Article	IF	CITATIONS
19	Acid-activatible micelleplex delivering siRNA-PD-L1 for improved cancer immunotherapy of CDK4/6 inhibition. Chinese Chemical Letters, 2021, 32, 1929-1936.	4.8	31
20	Tumor-permeated bioinspired theranostic nanovehicle remodels tumor immunosuppression for cancer therapy. Biomaterials, 2021, 269, 120609.	5.7	23
21	Metal-drug nanoparticles-mediated osteolytic microenvironment regulation for enhanced radiotherapy of orthotopic osteosarcoma. Chemical Engineering Journal, 2021, 417, 128103.	6.6	16
22	Recent Progress in the Design and Application of Supramolecular Peptide Hydrogels in Cancer Therapy. Advanced Healthcare Materials, 2021, 10, e2001239.	3.9	25
23	Engineering Nanoscale Artificial Antigen-Presenting Cells by Metabolic Dendritic Cell Labeling to Potentiate Cancer Immunotherapy. Nano Letters, 2021, 21, 2094-2103.	4.5	44
24	Oxygen-Delivering Polyfluorocarbon Nanovehicles Improve Tumor Oxygenation and Potentiate Photodynamic-Mediated Antitumor Immunity. ACS Nano, 2021, 15, 5405-5419.	7.3	57
25	Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials, 2021, 270, 120709.	5.7	77
26	Gut Microbiota: Influence on Carcinogenesis and Modulation Strategies by Drug Delivery Systems to Improve Cancer Therapy. Advanced Science, 2021, 8, 2003542.	5.6	26
27	Engineering Oxaliplatin Prodrug Nanoparticles for Second Nearâ€Infrared Fluorescence Imagingâ€Guided Immunotherapy of Colorectal Cancer. Small, 2021, 17, e2007882.	5.2	44
28	Bio-inspired amyloid polypeptides: From self-assembly to nanostructure design and biotechnological applications. Applied Materials Today, 2021, 22, 100966.	2.3	11
29	Endogenous Stimuliâ€Activatable Nanomedicine for Immune Theranostics for Cancer. Advanced Functional Materials, 2021, 31, 2100386.	7.8	36
30	Stimuli-activatable nanomaterials for phototherapy of cancer. Biomedical Materials (Bristol), 2021, 16, 042008.	1.7	16
31	From Design to Clinic: Engineered Nanobiomaterials for Immune Normalization Therapy of Cancer. Advanced Materials, 2021, 33, e2008094.	11.1	60
32	Acidityâ€Activatable Dynamic Nanoparticles Boosting Ferroptotic Cell Death for Immunotherapy of Cancer. Advanced Materials, 2021, 33, e2101155.	11.1	180
33	Nanovaccineâ€Mediated Cell Selective Delivery of Neoantigens Potentiating Adoptive Dendritic Cell Transfer for Personalized Immunization. Advanced Functional Materials, 2021, 31, 2104068.	7.8	19
34	Stimuli-Sheddable Nanomedicine Overcoming Pathophysiological Barriers for Potentiating Immunotherapy of Cancer. Journal of Biomedical Nanotechnology, 2021, 17, 1486-1509.	0.5	1
35	Engineering Chameleon Prodrug Nanovesicles to Increase Antigen Presentation and Inhibit PDâ€L1 Expression for Circumventing Immune Resistance of Cancer. Advanced Materials, 2021, 33, e2102668.	11.1	36
36	Engineering Nanorobots for Tumorâ€Targeting Drug Delivery: From Dynamic Control to Stimuliâ€Responsive Strategy. ChemBioChem, 2021, 22, 3369-3380.	1.3	10

Ηαιјиν Υυ

#	Article	IF	CITATIONS
37	Photoactivatable nanogenerators of reactive species for cancer therapy. Bioactive Materials, 2021, 6, 4301-4318.	8.6	14
38	Regulating Glucose Metabolism with Prodrug Nanoparticles for Promoting Photoimmunotherapy of Pancreatic Cancer. Advanced Science, 2021, 8, 2002746.	5.6	96
39	Nano drug delivery systems improve metastatic breast cancer therapy. Medical Review, 2021, 1, 244-274.	0.3	4
40	M2 macrophage microvesicle-inspired nanovehicles improve accessibility to cancer cells and cancer stem cells in tumors. Journal of Nanobiotechnology, 2021, 19, 397.	4.2	17
41	Targeting peptide-decorated biomimetic lipoproteins improve deep penetration and cancer cells accessibility in solid tumor. Acta Pharmaceutica Sinica B, 2020, 10, 529-545.	5.7	29
42	Enhancing Triple Negative Breast Cancer Immunotherapy by ICCâ€Templated Selfâ€Assembly of Paclitaxel Nanoparticles. Advanced Functional Materials, 2020, 30, 1906605.	7.8	145
43	Recent progress in supramolecular peptide assemblies as virus mimics for cancer immunotherapy. Biomaterials Science, 2020, 8, 1045-1057.	2.6	20
44	Nanoparticles-mediated reoxygenation strategy relieves tumor hypoxia for enhanced cancer therapy. Journal of Controlled Release, 2020, 319, 25-45.	4.8	80
45	Sheddable Prodrug Vesicles Combating Adaptive Immune Resistance for Improved Photodynamic Immunotherapy of Cancer. Nano Letters, 2020, 20, 353-362.	4.5	162
46	Dynamic covalent chemistry-regulated stimuli-activatable drug delivery systems for improved cancer therapy. Chinese Chemical Letters, 2020, 31, 1051-1059.	4.8	57
47	Engineering immunogenic cell death with nanosized drug delivery systems improving cancer immunotherapy. Current Opinion in Biotechnology, 2020, 66, 36-43.	3.3	17
48	Iron-Based Theranostic Nanoplatform for Improving Chemodynamic Therapy of Cancer. ACS Biomaterials Science and Engineering, 2020, 6, 4834-4845.	2.6	61
49	Engineering Prodrug Nanomedicine for Cancer Immunotherapy. Advanced Science, 2020, 7, 2002365.	5.6	71
50	Tumorâ€Activated Sizeâ€Enlargeable Bioinspired Lipoproteins Access Cancer Cells in Tumor to Elicit Antiâ€Tumor Immune Responses. Advanced Materials, 2020, 32, e2002380.	11.1	43
51	Smart Nanosized Drug Delivery Systems Inducing Immunogenic Cell Death for Combination with Cancer Immunotherapy. Accounts of Chemical Research, 2020, 53, 1761-1772.	7.6	64
52	Engineering nanomedicines through boosting immunogenic cell death for improved cancer immunotherapy. Acta Pharmacologica Sinica, 2020, 41, 986-994.	2.8	93
53	Nanomedicine and cancer immunotherapy. Acta Pharmacologica Sinica, 2020, 41, 879-880.	2.8	33
54	Engineering Polymeric Prodrug Nanoplatform for Vaccination Immunotherapy of Cancer. Nano Letters, 2020, 20, 4393-4402.	4.5	93

#	Article	IF	CITATIONS
55	Cancer nanomedicine meets immunotherapy: opportunities and challenges. Acta Pharmacologica Sinica, 2020, 41, 954-958.	2.8	33
56	Engineering autologous tumor cell vaccine to locally mobilize antitumor immunity in tumor surgical bed. Science Advances, 2020, 6, eaba4024.	4.7	78
57	Phospholipid membrane-decorated deep-penetrated nanocatalase relieve tumor hypoxia to enhance chemo-photodynamic therapy. Acta Pharmaceutica Sinica B, 2020, 10, 2246-2257.	5.7	30
58	Selective Inhibition of STRN3-Containing PP2A Phosphatase Restores Hippo Tumor-Suppressor Activity in Gastric Cancer. Cancer Cell, 2020, 38, 115-128.e9.	7.7	70
59	Reprogramming Tumor Associated Macrophages toward M1 Phenotypes with Nanomedicine for Anticancer Immunotherapy. Advanced Therapeutics, 2020, 3, 1900181.	1.6	31
60	Supramolecular Prodrug Nanovectors for Active Tumor Targeting and Combination Immunotherapy of Colorectal Cancer. Advanced Science, 2020, 7, 1903332.	5.6	66
61	Co-delivery of Cu(I) chelator and chemotherapeutics as a new strategy for tumor theranostic. Journal of Controlled Release, 2020, 321, 483-496.	4.8	27
62	Design of heterostructured hybrids comprising ultrathin 2D bismuth tungstate nanosheets reinforced by chloramphenicol imprinted polymers used as biomimetic interfaces for mass-sensitive detection. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110775.	2,5	10
63	Engineering Versatile Nanoparticles for Nearâ€Infrared Lightâ€Tunable Drug Release and Photothermal Degradation of Amyloid β. Advanced Functional Materials, 2020, 30, 1908473.	7.8	38
64	Molecular Imaging for Cancer Immunotherapy: Seeing Is Believing. Bioconjugate Chemistry, 2020, 31, 404-415.	1.8	31
65	Orally delivered legumain-activated nanovehicles improve tumor accumulation and penetration for combinational photothermal-chemotherapy. Journal of Controlled Release, 2020, 323, 59-70.	4.8	14
66	Engineering Stimuliâ€Activatable Boolean Logic Prodrug Nanoparticles for Combination Cancer Immunotherapy. Advanced Materials, 2020, 32, e1907210.	11.1	96
67	Stimuliâ€activatable nanomedicines for chemodynamic therapy of cancer. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1614.	3.3	53
68	Recent progress in drug delivery. Acta Pharmaceutica Sinica B, 2019, 9, 1145-1162.	5.7	529
69	Synthetic nucleic acid nanomedicines: A Chinese perspective. Journal of Gene Medicine, 2019, 21, e3111.	1.4	2
70	Selfâ€Amplified Drug Delivery with Lightâ€Inducible Nanocargoes to Enhance Cancer Immunotherapy. Advanced Materials, 2019, 31, e1902960.	11.1	192
71	Overview of recent advances in liposomal nanoparticle-based cancer immunotherapy. Acta Pharmacologica Sinica, 2019, 40, 1129-1137.	2.8	84
72	Bioinspired lipoproteins-mediated photothermia remodels tumor stroma to improve cancer cell accessibility of second nanoparticles. Nature Communications, 2019, 10, 3322.	5.8	91

#	Article	IF	CITATIONS
73	Engineering nanoparticles to locally activate T cells in the tumor microenvironment. Science Immunology, 2019, 4, .	5.6	180
74	Hepatocellular Carcinoma Growth Retardation and PD-1 Blockade Therapy Potentiation with Synthetic High-density Lipoprotein. Nano Letters, 2019, 19, 5266-5276.	4.5	40
75	Emerging Approaches of Cellâ€Based Nanosystems to Target Cancer Metastasis. Advanced Functional Materials, 2019, 29, 1903441.	7.8	41
76	Nanomedicineâ€Based Immunotherapy for the Treatment of Cancer Metastasis. Advanced Materials, 2019, 31, e1904156.	11.1	120
77	In Vivo Environmentâ€Adaptive Nanocomplex with Tumor Cell–Specific Cytotoxicity Enhances T Cells Infiltration and Improves Cancer Therapy. Small, 2019, 15, e1902822.	5.2	25
78	Reactive Oxygen Species–Activatable Liposomes Regulating Hypoxic Tumor Microenvironment for Synergistic Photo/Chemodynamic Therapies. Advanced Functional Materials, 2019, 29, 1905013.	7.8	124
79	Peptide Nanotubeâ€Templated Biomineralization of Cu _{2â^'} <i>_x</i> S Nanoparticles for Combination Treatment of Metastatic Tumor. Small, 2019, 15, e1904397.	5.2	29
80	Injectable peptide hydrogel as intraperitoneal triptolide depot for the treatment of orthotopic hepatocellular carcinoma. Acta Pharmaceutica Sinica B, 2019, 9, 1050-1060.	5.7	23
81	Bioinspired Multivalent Peptide Nanotubes for Sialic Acid Targeting and Imagingâ€Guided Treatment of Metastatic Melanoma. Small, 2019, 15, e1900157.	5.2	30
82	Nonâ€viral gene delivery for cancer immunotherapy. Journal of Gene Medicine, 2019, 21, e3092.	1.4	22
83	Tumor Microenvironmentâ€Activatable Prodrug Vesicles for Nanoenabled Cancer Chemoimmunotherapy Combining Immunogenic Cell Death Induction and CD47 Blockade. Advanced Materials, 2019, 31, e1805888.	11.1	374
84	Recent advances in nanosized drug delivery systems for overcoming the barriers to anti-PD immunotherapy of cancer. Nano Today, 2019, 29, 100801.	6.2	48
85	Engineering Nanoparticles to Reprogram the Tumor Immune Microenvironment for Improved Cancer Immunotherapy. Theranostics, 2019, 9, 7981-8000.	4.6	106
86	Imaging Tumorous Methylglyoxal by an Activatable Near-Infrared Fluorescent Probe for Monitoring Glyoxalase 1 Activity. Analytical Chemistry, 2019, 91, 15577-15584.	3.2	17
87	Tumor microenvironment-responsive docetaxel-loaded micelle combats metastatic breast cancer. Science Bulletin, 2019, 64, 91-100.	4.3	38
88	Improving Cancer Vaccine Efficiency by Nanomedicine. Advanced Biology, 2019, 3, e1800287.	3.0	22
89	Cocktail Strategy Based on Spatioâ€Temporally Controlled Nano Device Improves Therapy of Breast Cancer. Advanced Materials, 2019, 31, e1806202.	11.1	115
90	Light-Activated Core–Shell Nanoparticles for Spatiotemporally Specific Treatment of Metastatic Triple-Negative Breast Cancer. ACS Nano, 2018, 12, 2789-2802.	7.3	64

#	Article	IF	CITATIONS
91	Tumor Cells‧elective Bionic Nanodevice Exploiting Heparanase Combats Metastatic Breast Cancer. Advanced Functional Materials, 2018, 28, 1707289.	7.8	21
92	Peptide-based nanoprobes for molecular imaging and disease diagnostics. Chemical Society Reviews, 2018, 47, 3490-3529.	18.7	127
93	A cancer vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors. Nature Communications, 2018, 9, 1532.	5.8	276
94	NIRâ€Triggered Release of Nitric Oxide with Upconversion Nanoparticles Inhibits Platelet Aggregation in Blood Samples. Particle and Particle Systems Characterization, 2018, 35, 1700281.	1.2	12
95	Rational Design of Tumor Microenvironmentâ€Activated Micelles for Programed Targeting of Breast Cancer Metastasis. Advanced Functional Materials, 2018, 28, 1705622.	7.8	54
96	A high brightness probe of polymer nanoparticles for biological imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 192, 228-235.	2.0	1
97	Rational Design of Nanoparticles with Deep Tumor Penetration for Effective Treatment of Tumor Metastasis. Advanced Functional Materials, 2018, 28, 1801840.	7.8	112
98	Deep Tumorâ€Penetrated Nanocages Improve Accessibility to Cancer Stem Cells for Photothermalâ€Chemotherapy of Breast Cancer Metastasis. Advanced Science, 2018, 5, 1801012.	5.6	62
99	Apoferritin nanocages loading mertansine enable effective eradiation of cancer stem-like cells in vitro. International Journal of Pharmaceutics, 2018, 553, 201-209.	2.6	8
100	Binary Cooperative Prodrug Nanoparticles Improve Immunotherapy by Synergistically Modulating Immune Tumor Microenvironment. Advanced Materials, 2018, 30, e1803001.	11.1	351
101	Cell-penetrating peptide-based nanovehicles potentiate lymph metastasis targeting and deep penetration for anti-metastasis therapy. Theranostics, 2018, 8, 3597-3610.	4.6	36
102	Stimuli-Responsive Nanomedicines for Overcoming Cancer Multidrug Resistance. Theranostics, 2018, 8, 1059-1074.	4.6	183
103	Traceable Bioinspired Nanoparticle for the Treatment of Metastatic Breast Cancer via NIRâ€Trigged Intracellular Delivery of Methylene Blue and Cisplatin. Advanced Materials, 2018, 30, e1802378.	11.1	73
104	Bioengineered Macrophages Can Responsively Transform into Nanovesicles To Target Lung Metastasis. Nano Letters, 2018, 18, 4762-4770.	4.5	69
105	Progress of Cellâ€Đerived Biomimetic Drug Delivery Systems for Cancer Therapy. Advanced Therapeutics, 2018, 1, 1800053.	1.6	34
106	Acid-Promoted D-A-D Type Far-Red Fluorescent Probe with High Photostability for Lysosomal Nitric Oxide Imaging. Analytical Chemistry, 2018, 90, 7953-7962.	3.2	48
107	Dual pH-sensitive micelles with charge-switch for controlling cellular uptake and drug release to treat metastatic breast cancer. Biomaterials, 2017, 114, 44-53.	5.7	95
108	Albumin Biomimetic Nanocorona Improves Tumor Targeting and Penetration for Synergistic Therapy of Metastatic Breast Cancer. Advanced Functional Materials, 2017, 27, 1605679.	7.8	73

#	Article	IF	CITATIONS
109	Drug Delivery: One tep Microfluidic Synthesis of Nanocomplex with Tunable Rigidity and Acidâ€&witchable Surface Charge for Overcoming Drug Resistance (Small 9/2017). Small, 2017, 13, .	5.2	1
110	Hydrophobic-carbon-dot-based dual-emission micelle for ratiometric fluorescence biosensing and imaging of Cu 2+ in liver cells. Biosensors and Bioelectronics, 2017, 92, 101-108.	5.3	83
111	Ly6C ^{hi} Monocytes Delivering pHâ€Sensitive Micelle Loading Paclitaxel Improve Targeting Therapy of Metastatic Breast Cancer. Advanced Functional Materials, 2017, 27, 1701093.	7.8	46
112	Cancer Therapy: Programmed Multiresponsive Vesicles for Enhanced Tumor Penetration and Combination Therapy of Tripleâ€Negative Breast Cancer (Adv. Funct. Mater. 20/2017). Advanced Functional Materials, 2017, 27, .	7.8	0
113	Phospholipid-mimic oxaliplatin prodrug liposome for treatment of the metastatic triple negative breast cancer. Biomaterials Science, 2017, 5, 1522-1525.	2.6	16
114	Programmed Multiresponsive Vesicles for Enhanced Tumor Penetration and Combination Therapy of Tripleâ€Negative Breast Cancer. Advanced Functional Materials, 2017, 27, 1606530.	7.8	80
115	A Self-Assembled Ratiometric Polymeric Nanoprobe for Highly Selective Fluorescence Detection of Hydrogen Peroxide. Langmuir, 2017, 33, 3287-3295.	1.6	33
116	Cancer Cell Membrane-Coated Gold Nanocages with Hyperthermia-Triggered Drug Release and Homotypic Target Inhibit Growth and Metastasis of Breast Cancer. Advanced Functional Materials, 2017, 27, 1604300.	7.8	281
117	One‣tep Microfluidic Synthesis of Nanocomplex with Tunable Rigidity and Acid‣witchable Surface Charge for Overcoming Drug Resistance. Small, 2017, 13, 1603109.	5.2	56
118	Chemical antagonism between photodynamic agents and chemotherapeutics: mechanism and avoidance. Chemical Communications, 2017, 53, 12438-12441.	2.2	8
119	Theranostic Prodrug Vesicles for Reactive Oxygen Speciesâ€Triggered Ultrafast Drug Release and Localâ€Regional Therapy of Metastatic Tripleâ€Negative Breast Cancer. Advanced Functional Materials, 2017, 27, 1703674.	7.8	73
120	Acidity-Triggered Ligand-Presenting Nanoparticles To Overcome Sequential Drug Delivery Barriers to Tumors. Nano Letters, 2017, 17, 5429-5436.	4.5	135
121	Inflammatory Monocytes Loading Protease-Sensitive Nanoparticles Enable Lung Metastasis Targeting and Intelligent Drug Release for Anti-Metastasis Therapy. Nano Letters, 2017, 17, 5546-5554.	4.5	107
122	Selective and sensitive visualization of endogenous nitric oxide in living cells and animals by a Si-rhodamine deoxylactam-based near-infrared fluorescent probe. Chemical Science, 2017, 8, 6857-6864.	3.7	71
123	Regulating cancer associated fibroblasts with losartan-loaded injectable peptide hydrogel to potentiate chemotherapy in inhibiting growth and lung metastasis of triple negative breast cancer. Biomaterials, 2017, 144, 60-72.	5.7	111
124	Smart nanoparticles improve therapy for drug-resistant tumors by overcoming pathophysiological barriers. Acta Pharmacologica Sinica, 2017, 38, 1-8.	2.8	50
125	Enhanced Blood Suspensibility and Laser-Activated Tumor-specific Drug Release of Theranostic Mesoporous Silica Nanoparticles by Functionalizing with Erythrocyte Membranes. Theranostics, 2017, 7, 523-537.	4.6	162
126	Preparation and Application of Cell Membrane-Camouflaged Nanoparticles for Cancer Therapy. Theranostics, 2017, 7, 2575-2592.	4.6	219

#	Article	IF	CITATIONS
127	pH-Sensitive Nano-Complexes Overcome Drug Resistance and Inhibit Metastasis of Breast Cancer by Silencing Akt Expression. Theranostics, 2017, 7, 4204-4216.	4.6	45
128	A pH-Responsive Host-guest Nanosystem Loading Succinobucol Suppresses Lung Metastasis of Breast Cancer. Theranostics, 2016, 6, 435-445.	4.6	45
129	Recent Progress in Light-Triggered Nanotheranostics for Cancer Treatment. Theranostics, 2016, 6, 948-968.	4.6	182
130	Cisplatin Prodrug-Conjugated Gold Nanocluster for Fluorescence Imaging and Targeted Therapy of the Breast Cancer. Theranostics, 2016, 6, 679-687.	4.6	112
131	Triple-Layered pH-Responsive Micelleplexes Loaded with siRNA and Cisplatin Prodrug for NF-Kappa B Targeted Treatment of Metastatic Breast Cancer. Theranostics, 2016, 6, 14-27.	4.6	86
132	Current Approaches of Photothermal Therapy in Treating Cancer Metastasis with Nanotherapeutics. Theranostics, 2016, 6, 762-772.	4.6	724
133	Long Circulation Redâ€Bloodâ€Cellâ€Mimetic Nanoparticles with Peptideâ€Enhanced Tumor Penetration for Simultaneously Inhibiting Growth and Lung Metastasis of Breast Cancer. Advanced Functional Materials, 2016, 26, 1243-1252.	7.8	177
134	Treatment of Malignant Brain Tumor by Tumorâ€Triggered Programmed Wormlike Micelles with Precise Targeting and Deep Penetration. Advanced Functional Materials, 2016, 26, 4201-4212.	7.8	48
135	Silibinin and indocyanine green-loaded nanoparticles inhibit the growth and metastasis of mammalian breast cancer cells in vitro. Acta Pharmacologica Sinica, 2016, 37, 941-949.	2.8	27
136	Bioinspired Nanoparticles with NIR ontrolled Drug Release for Synergetic Chemophotothermal Therapy of Metastatic Breast Cancer. Advanced Functional Materials, 2016, 26, 7495-7506.	7.8	144
137	Versatile Prodrug Nanoparticles for Acidâ€Triggered Precise Imaging and Organelleâ€Specific Combination Cancer Therapy. Advanced Functional Materials, 2016, 26, 7431-7442.	7.8	76
138	Acid-Activatable Versatile Micelleplexes for PD-L1 Blockade-Enhanced Cancer Photodynamic Immunotherapy. Nano Letters, 2016, 16, 5503-5513.	4.5	356
139	Cancer ellâ€Biomimetic Nanoparticles for Targeted Therapy of Homotypic Tumors. Advanced Materials, 2016, 28, 9581-9588.	11.1	458
140	Photodynamic micelles for amyloid \hat{l}^2 degradation and aggregation inhibition. Chemical Communications, 2016, 52, 12044-12047.	2.2	25
141	Liposomes Coated with Isolated Macrophage Membrane Can Target Lung Metastasis of Breast Cancer. ACS Nano, 2016, 10, 7738-7748.	7.3	462
142	Polydopamineâ€Functionalized Graphene Oxide Loaded with Gold Nanostars and Doxorubicin for Combined Photothermal and Chemotherapy of Metastatic Breast Cancer. Advanced Healthcare Materials, 2016, 5, 2227-2236.	3.9	54
143	Tumorâ€Microenvironmentâ€Adaptive Nanoparticles Codeliver Paclitaxel and siRNA to Inhibit Growth and Lung Metastasis of Breast Cancer. Advanced Functional Materials, 2016, 26, 6033-6046. 	7.8	81
144	Cooperative Treatment of Metastatic Breast Cancer Using Host-Guest Nanoplatform Coloaded with Docetaxel and siRNA. Small, 2016, 12, 488-498.	5.2	45

#	Article	IF	CITATIONS
145	Gold nanomaterials for treatment of metastatic cancer. Science China Chemistry, 2016, 59, 984-990.	4.2	18
146	pHâ€Responsive Wormlike Micelles with Sequential Metastasis Targeting Inhibit Lung Metastasis of Breast Cancer. Advanced Healthcare Materials, 2016, 5, 439-448.	3.9	33
147	Large Pore‧ized Hollow Mesoporous Organosilica for Redoxâ€Responsive Gene Delivery and Synergistic Cancer Chemotherapy. Advanced Materials, 2016, 28, 1963-1969.	11.1	245
148	Intracellularly Acid-Switchable Multifunctional Micelles for Combinational Photo/Chemotherapy of the Drug-Resistant Tumor. ACS Nano, 2016, 10, 3496-3508.	7.3	267
149	Photothermal Therapy: Tumorâ€Penetrating Nanotherapeutics Loading a Nearâ€Infrared Probe Inhibit Growth and Metastasis of Breast Cancer (Adv. Funct. Mater. 19/2015). Advanced Functional Materials, 2015, 25, 2940-2940.	7.8	2
150	An arylboronate-based fluorescent probe for peroxynitrite with fast response and high selectivity. Analytical Methods, 2015, 7, 4885-4888.	1.3	23
151	Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomaterialia, 2015, 14, 115-124.	4.1	116
152	Inhibition of metastasis and growth of breast cancer by pH-sensitive poly (β-amino ester) nanoparticles co-delivering two siRNA and paclitaxel. Biomaterials, 2015, 48, 1-15.	5.7	134
153	Codelivery of Sorafenib and Curcumin by Directed Self-Assembled Nanoparticles Enhances Therapeutic Effect on Hepatocellular Carcinoma. Molecular Pharmaceutics, 2015, 12, 922-931.	2.3	82
154	pH―and NIR Lightâ€Responsive Micelles with Hyperthermiaâ€Triggered Tumor Penetration and Cytoplasm Drug Release to Reverse Doxorubicin Resistance in Breast Cancer. Advanced Functional Materials, 2015, 25, 2489-2500.	7.8	218
155	Inhibition of Breast Cancer Metastasis by Pluronic Copolymers with Moderate Hydrophilic–Lipophilic Balance. Molecular Pharmaceutics, 2015, 12, 3323-3331.	2.3	26
156	Near infrared light-actuated gold nanorods with cisplatin–polypeptide wrapping for targeted therapy of triple negative breast cancer. Nanoscale, 2015, 7, 14854-14864.	2.8	61
157	Shrapnel nanoparticles loading docetaxel inhibit metastasis and growth of breast cancer. Biomaterials, 2015, 64, 10-20.	5.7	61
158	Tumorâ€Penetrating Nanotherapeutics Loading a Nearâ€Infrared Probe Inhibit Growth and Metastasis of Breast Cancer. Advanced Functional Materials, 2015, 25, 2831-2839.	7.8	96
159	Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064Ânm-laser-driven photothermal agent. Biomaterials, 2015, 52, 407-416.	5.7	107
160	Hydrophobic interaction mediating self-assembled nanoparticles of succinobucol suppress lung metastasis of breast cancer by inhibition of VCAM-1 expression. Journal of Controlled Release, 2015, 205, 162-171.	4.8	84
161	Triplex molecular beacons for sensitive recognition of melamine based on abasic-site-containing DNA and fluorescent silver nanoclusters. Chemical Communications, 2015, 51, 7958-7961.	2.2	34
162	Bioreducible Micelles with Endosomal Buffering and Multidrug Resistance-Reversing Function Enhance Anti-Tumor Efficacy of Doxorubicin. Journal of Biomedical Nanotechnology, 2015, 11, 1764-1775.	0.5	6

#	Article	IF	CITATIONS
163	Largeâ€Pore Ultrasmall Mesoporous Organosilica Nanoparticles: Micelle/Precursor Coâ€templating Assembly and Nuclearâ€Targeted Gene Delivery. Advanced Materials, 2015, 27, 215-222.	11.1	266
164	Multi-targeted inhibition of tumor growth and lung metastasis by redox-sensitive shell crosslinked micelles loading disulfiram. Nanotechnology, 2014, 25, 125102.	1.3	42
165	Reversal of Lung Cancer Multidrug Resistance by pH-Responsive Micelleplexes Mediating Co-Delivery of siRNA and Paclitaxel. Macromolecular Bioscience, 2014, 14, 100-109.	2.1	61
166	Simultaneous Inhibition of Tumor Growth and Angiogenesis for Resistant Hepatocellular Carcinoma by Co-delivery of Sorafenib and Survivin Small Hairpin RNA. Molecular Pharmaceutics, 2014, 11, 3342-3351.	2.3	39
167	The use of lipid-coated nanodiamond to improve bioavailability and efficacy of sorafenib in resisting metastasis of gastric cancer. Biomaterials, 2014, 35, 4565-4572.	5.7	101
168	iRGD Conjugated TPGS Mediates Codelivery of Paclitaxel and Survivin shRNA for the Reversal of Lung Cancer Resistance. Molecular Pharmaceutics, 2014, 11, 2579-2591.	2.3	63
169	Hollow Mesoporous Organosilica Nanoparticles: A Generic Intelligent Framework-Hybridization Approach for Biomedicine. Journal of the American Chemical Society, 2014, 136, 16326-16334.	6.6	338
170	Treatment of metastatic breast cancer by combination of chemotherapy and photothermal ablation using doxorubicin-loaded DNA wrapped gold nanorods. Biomaterials, 2014, 35, 8374-8384.	5.7	140
171	Directed Self-assembled Nanoparticles of Probucol Improve Oral Delivery: Fabrication, Performance and Correlation. Pharmaceutical Research, 2014, 31, 2266-2275.	1.7	10
172	Co-delivery of doxorubicin and RNA using pH-sensitive poly (β-amino ester) nanoparticles for reversal of multidrug resistance of breast cancer. Biomaterials, 2014, 35, 6047-6059.	5.7	113
173	Proteaseâ€Activatable Hybrid Nanoprobe for Tumor Imaging. Advanced Functional Materials, 2014, 24, 5443-5453.	7.8	26
174	Nanoassembly of Probucol Enables Novel Therapeutic Efficacy in the Suppression of Lung Metastasis of Breast Cancer. Small, 2014, 10, 4735-4745.	5.2	26
175	A TPGS-incorporating nanoemulsion of paclitaxel circumvents drug resistance in breast cancer. International Journal of Pharmaceutics, 2014, 471, 206-213.	2.6	73
176	Hydrogen-bonded and reduction-responsive micelles loading atorvastatin for therapy of breast cancer metastasis. Biomaterials, 2014, 35, 7574-7587.	5.7	51
177	Synergistic inhibition of breast cancer metastasis by silibinin-loaded lipid nanoparticles containing TPGS. International Journal of Pharmaceutics, 2013, 454, 21-30.	2.6	111
178	Intracellular pH-activated PEG-b-PDPA wormlike micelles for hydrophobic drug delivery. Polymer Chemistry, 2013, 4, 5052.	1.9	52
179	Induction of apoptosis in non-small cell lung cancer by downregulation of MDM2 using pH-responsive PMPC-b-PDPA/siRNA complex nanoparticles. Biomaterials, 2013, 34, 2738-2747.	5.7	62
180	Coâ€delivery of Cellâ€permeable Chimeric Apoptosis AVPIR ₈ Peptide/p53 DNA for Cocktail Therapy. Advanced Functional Materials, 2013, 23, 6068-6075.	7.8	15

#	Article	IF	CITATIONS
181	The inhibition of metastasis and growth of breast cancer by blocking the NF-κB signaling pathway using bioreducible PEI-based/p65 shRNA complex nanoparticles. Biomaterials, 2013, 34, 5381-5390.	5.7	53
182	Colloidal HPMO Nanoparticles: Silicaâ€Etching Chemistry Tailoring, Topological Transformation, and Nanoâ€Biomedical Applications. Advanced Materials, 2013, 25, 3100-3105.	11.1	205
183	A self-assembled nanocarrier loading teniposide improves the oral delivery and drug concentration in tumor. Journal of Controlled Release, 2013, 166, 30-37.	4.8	47
184	Porous starch based self-assembled nano-delivery system improves the oral absorption of lipophilic drug. International Journal of Pharmaceutics, 2013, 444, 162-168.	2.6	49
185	Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor. Advanced Drug Delivery Reviews, 2013, 65, 1699-1715.	6.6	331
186	Reversal of Multidrug Resistance by Mitochondrial Targeted Self-Assembled Nanocarrier Based on Stearylamine. Molecular Pharmaceutics, 2013, 10, 2426-2434.	2.3	30
187	Physicochemical Characteristics of Nanoparticles Affect Circulation, Biodistribution, Cellular Internalization, and Trafficking. Small, 2013, 9, 1521-1532.	5.2	694
188	Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infra-red absorption. Nanoscale, 2013, 5, 6469.	2.8	87
189	Smart pH-Sensitive and Temporal-Controlled Polymeric Micelles for Effective Combination Therapy of Doxorubicin and Disulfiram. ACS Nano, 2013, 7, 5858-5869.	7.3	353
190	Simultaneous inhibition of metastasis and growth of breast cancer by co-delivery of twist shRNA and paclitaxel using pluronic P85-PEI/TPGS complex nanoparticles. Biomaterials, 2013, 34, 1581-1590.	5.7	83
191	Superparamagnetic Iron Oxide Nanoparticles: Amplifying ROS Stress to Improve Anticancer Drug Efficacy. Theranostics, 2013, 3, 116-126.	4.6	277
192	Co-delivery of paclitaxel and survivin shRNA by pluronic P85-PEI/TPGS complex nanoparticles to overcome drug resistance in lung cancer. Biomaterials, 2012, 33, 8613-8624.	5.7	136
193	Solid lipid nanoparticles loading candesartan cilexetil enhance oral bioavailability: in vitro characteristics and absorption mechanism in rats. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 740-747.	1.7	131
194	Nanohybrid systems of non-ionic surfactant inserting liposomes loading paclitaxel for reversal of multidrug resistance. International Journal of Pharmaceutics, 2012, 422, 390-397.	2.6	48
195	Overcoming multidrug resistance by co-delivery of Mdr-1 and survivin-targeting RNA with reduction-responsible cationic poly(12-amino esters). Biomaterials, 2012, 33, 6495-6506.	5.7	94
196	Linear Cationic Click Polymers/DNA Nanoparticles: In Vitro Structure–Activity Relationship and In Vivo Evaluation for Gene Delivery. Bioconjugate Chemistry, 2011, 22, 1153-1161.	1.8	15
197	Overcoming Endosomal Barrier by Amphotericin B-Loaded Dual pH-Responsive PDMA- <i>b</i> -PDPA Micelleplexes for siRNA Delivery. ACS Nano, 2011, 5, 9246-9255.	7.3	218
198	Controlled Intracellular Release of Doxorubicin in Multidrug-Resistant Cancer Cells by Tuning the Shell-Pore Sizes of Mesoporous Silica Nanoparticles. ACS Nano, 2011, 5, 9788-9798.	7.3	353

#	Article	IF	CITATIONS
199	Epidermal Growth Factor–PEG Functionalized PAMAM-Pentaethylenehexamine Dendron for Targeted Gene Delivery Produced by Click Chemistry. Biomacromolecules, 2011, 12, 2039-2047.	2.6	69
200	Nanoemulsion improves the oral absorption of candesartan cilexetil in rats: Performance and mechanism. Journal of Controlled Release, 2011, 149, 168-174.	4.8	184
201	Bioreducible poly (β-amino esters)/shRNA complex nanoparticles for efficient RNA delivery. Journal of Controlled Release, 2011, 151, 35-44.	4.8	45
202	Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia. Journal of Controlled Release, 2011, 156, 276-280.	4.8	202
203	Reversal of multidrug resistance by reduction-sensitive linear cationic click polymer/iMDR1-pDNA complex nanoparticles. Biomaterials, 2011, 32, 1738-1747.	5.7	53
204	Poly(ε-caprolactone)-Block-poly(ethyl Ethylene Phosphate) Micelles for Brain-Targeting Drug Delivery: In Vitro and In Vivo Valuation. Pharmaceutical Research, 2010, 27, 2657-2669.	1.7	50
205	The characteristics and performance of a multifunctional nanoassembly system for the co-delivery of docetaxel and iSur-pDNA in a mouse hepatocellular carcinoma model. Biomaterials, 2010, 31, 916-922.	5.7	73
206	Influence of the Molecular Weight of Bioreducible Oligoethylenimine Conjugates on the Polyplex Transfection Properties. AAPS Journal, 2009, 11, 445-55.	2.2	40
207	In vitro and in vivo evaluation of donepezil-sustained release microparticles for the treatment of Alzheimer's disease. Biomaterials, 2007, 28, 1882-1888.	5.7	58