Haijun Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4022731/publications.pdf

Version: 2024-02-01

13771 9786 18,849 207 73 129 citations h-index g-index papers 214 214 214 18231 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Current Approaches of Photothermal Therapy in Treating Cancer Metastasis with Nanotherapeutics. Theranostics, 2016, 6, 762-772.	10.0	724
2	Physicochemical Characteristics of Nanoparticles Affect Circulation, Biodistribution, Cellular Internalization, and Trafficking. Small, 2013, 9, 1521-1532.	10.0	694
3	Recent progress in drug delivery. Acta Pharmaceutica Sinica B, 2019, 9, 1145-1162.	12.0	529
4	Liposomes Coated with Isolated Macrophage Membrane Can Target Lung Metastasis of Breast Cancer. ACS Nano, 2016, 10, 7738-7748.	14.6	462
5	Cancerâ€Cellâ€Biomimetic Nanoparticles for Targeted Therapy of Homotypic Tumors. Advanced Materials, 2016, 28, 9581-9588.	21.0	458
6	Tumor Microenvironmentâ€Activatable Prodrug Vesicles for Nanoenabled Cancer Chemoimmunotherapy Combining Immunogenic Cell Death Induction and CD47 Blockade. Advanced Materials, 2019, 31, e1805888.	21.0	374
7	Acid-Activatable Versatile Micelleplexes for PD-L1 Blockade-Enhanced Cancer Photodynamic Immunotherapy. Nano Letters, 2016, 16, 5503-5513.	9.1	356
8	Controlled Intracellular Release of Doxorubicin in Multidrug-Resistant Cancer Cells by Tuning the Shell-Pore Sizes of Mesoporous Silica Nanoparticles. ACS Nano, 2011, 5, 9788-9798.	14.6	353
9	Smart pH-Sensitive and Temporal-Controlled Polymeric Micelles for Effective Combination Therapy of Doxorubicin and Disulfiram. ACS Nano, 2013, 7, 5858-5869.	14.6	353
10	Binary Cooperative Prodrug Nanoparticles Improve Immunotherapy by Synergistically Modulating Immune Tumor Microenvironment. Advanced Materials, 2018, 30, e1803001.	21.0	351
11	Hollow Mesoporous Organosilica Nanoparticles: A Generic Intelligent Framework-Hybridization Approach for Biomedicine. Journal of the American Chemical Society, 2014, 136, 16326-16334.	13.7	338
12	Reversal of multidrug resistance by stimuli-responsive drug delivery systems for therapy of tumor. Advanced Drug Delivery Reviews, 2013, 65, 1699-1715.	13.7	331
13	Cancer Cell Membrane-Coated Gold Nanocages with Hyperthermia-Triggered Drug Release and Homotypic Target Inhibit Growth and Metastasis of Breast Cancer. Advanced Functional Materials, 2017, 27, 1604300.	14.9	281
14	Superparamagnetic Iron Oxide Nanoparticles: Amplifying ROS Stress to Improve Anticancer Drug Efficacy. Theranostics, 2013, 3, 116-126.	10.0	277
15	A cancer vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors. Nature Communications, 2018, 9, 1532.	12.8	276
16	Intracellularly Acid-Switchable Multifunctional Micelles for Combinational Photo/Chemotherapy of the Drug-Resistant Tumor. ACS Nano, 2016, 10, 3496-3508.	14.6	267
17	Largeâ€Pore Ultrasmall Mesoporous Organosilica Nanoparticles: Micelle/Precursor Coâ€templating Assembly and Nuclearâ€Targeted Gene Delivery. Advanced Materials, 2015, 27, 215-222.	21.0	266
18	Large Poreâ€6ized Hollow Mesoporous Organosilica for Redoxâ€Responsive Gene Delivery and Synergistic Cancer Chemotherapy. Advanced Materials, 2016, 28, 1963-1969.	21.0	245

#	Article	IF	CITATIONS
19	Preparation and Application of Cell Membrane-Camouflaged Nanoparticles for Cancer Therapy. Theranostics, 2017, 7, 2575-2592.	10.0	219
20	Overcoming Endosomal Barrier by Amphotericin B-Loaded Dual pH-Responsive PDMA- <i>b</i> -PDPA Micelleplexes for siRNA Delivery. ACS Nano, 2011, 5, 9246-9255.	14.6	218
21	pH―and NIR Lightâ€Responsive Micelles with Hyperthermiaâ€Triggered Tumor Penetration and Cytoplasm Drug Release to Reverse Doxorubicin Resistance in Breast Cancer. Advanced Functional Materials, 2015, 25, 2489-2500.	14.9	218
22	Colloidal HPMO Nanoparticles: Silicaâ€Etching Chemistry Tailoring, Topological Transformation, and Nanoâ€Biomedical Applications. Advanced Materials, 2013, 25, 3100-3105.	21.0	205
23	Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia. Journal of Controlled Release, 2011, 156, 276-280.	9.9	202
24	Selfâ€Amplified Drug Delivery with Lightâ€Inducible Nanocargoes to Enhance Cancer Immunotherapy. Advanced Materials, 2019, 31, e1902960.	21.0	192
25	Nanoemulsion improves the oral absorption of candesartan cilexetil in rats: Performance and mechanism. Journal of Controlled Release, 2011, 149, 168-174.	9.9	184
26	Stimuli-Responsive Nanomedicines for Overcoming Cancer Multidrug Resistance. Theranostics, 2018, 8, 1059-1074.	10.0	183
27	Recent Progress in Light-Triggered Nanotheranostics for Cancer Treatment. Theranostics, 2016, 6, 948-968.	10.0	182
28	Engineering nanoparticles to locally activate T cells in the tumor microenvironment. Science lmmunology, 2019, 4, .	11.9	180
29	Acidityâ€Activatable Dynamic Nanoparticles Boosting Ferroptotic Cell Death for Immunotherapy of Cancer. Advanced Materials, 2021, 33, e2101155.	21.0	180
30	Long Circulation Redâ€Bloodâ€Cellâ€Mimetic Nanoparticles with Peptideâ€Enhanced Tumor Penetration for Simultaneously Inhibiting Growth and Lung Metastasis of Breast Cancer. Advanced Functional Materials, 2016, 26, 1243-1252.	14.9	177
31	Enhanced Blood Suspensibility and Laser-Activated Tumor-specific Drug Release of Theranostic Mesoporous Silica Nanoparticles by Functionalizing with Erythrocyte Membranes. Theranostics, 2017, 7, 523-537.	10.0	162
32	Sheddable Prodrug Vesicles Combating Adaptive Immune Resistance for Improved Photodynamic Immunotherapy of Cancer. Nano Letters, 2020, 20, 353-362.	9.1	162
33	Construction and application of base-stable MOFs: a critical review. Chemical Society Reviews, 2022, 51, 6417-6441.	38.1	147
34	Enhancing Triple Negative Breast Cancer Immunotherapy by ICGâ€Templated Selfâ€Assembly of Paclitaxel Nanoparticles. Advanced Functional Materials, 2020, 30, 1906605.	14.9	145
35	Bioinspired Nanoparticles with NIRâ€Controlled Drug Release for Synergetic Chemophotothermal Therapy of Metastatic Breast Cancer. Advanced Functional Materials, 2016, 26, 7495-7506.	14.9	144
36	Treatment of metastatic breast cancer by combination of chemotherapy and photothermal ablation using doxorubicin-loaded DNA wrapped gold nanorods. Biomaterials, 2014, 35, 8374-8384.	11.4	140

#	Article	IF	CITATIONS
37	Co-delivery of paclitaxel and survivin shRNA by pluronic P85-PEI/TPGS complex nanoparticles to overcome drug resistance in lung cancer. Biomaterials, 2012, 33, 8613-8624.	11.4	136
38	Acidity-Triggered Ligand-Presenting Nanoparticles To Overcome Sequential Drug Delivery Barriers to Tumors. Nano Letters, 2017, 17, 5429-5436.	9.1	135
39	Inhibition of metastasis and growth of breast cancer by pH-sensitive poly (\hat{l}^2 -amino ester) nanoparticles co-delivering two siRNA and paclitaxel. Biomaterials, 2015, 48, 1-15.	11.4	134
40	Solid lipid nanoparticles loading candesartan cilexetil enhance oral bioavailability: in vitro characteristics and absorption mechanism in rats. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 740-747.	3.3	131
41	Peptide-based nanoprobes for molecular imaging and disease diagnostics. Chemical Society Reviews, 2018, 47, 3490-3529.	38.1	127
42	Reactive Oxygen Species–Activatable Liposomes Regulating Hypoxic Tumor Microenvironment for Synergistic Photo/Chemodynamic Therapies. Advanced Functional Materials, 2019, 29, 1905013.	14.9	124
43	Nanomedicineâ€Based Immunotherapy for the Treatment of Cancer Metastasis. Advanced Materials, 2019, 31, e1904156.	21.0	120
44	Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomaterialia, 2015, 14, 115-124.	8.3	116
45	Cocktail Strategy Based on Spatioâ€Temporally Controlled Nano Device Improves Therapy of Breast Cancer. Advanced Materials, 2019, 31, e1806202.	21.0	115
46	Co-delivery of doxorubicin and RNA using pH-sensitive poly (\hat{l}^2 -amino ester) nanoparticles for reversal of multidrug resistance of breast cancer. Biomaterials, 2014, 35, 6047-6059.	11.4	113
47	Cisplatin Prodrug-Conjugated Gold Nanocluster for Fluorescence Imaging and Targeted Therapy of the Breast Cancer. Theranostics, 2016, 6, 679-687.	10.0	112
48	Rational Design of Nanoparticles with Deep Tumor Penetration for Effective Treatment of Tumor Metastasis. Advanced Functional Materials, 2018, 28, 1801840.	14.9	112
49	Synergistic inhibition of breast cancer metastasis by silibinin-loaded lipid nanoparticles containing TPGS. International Journal of Pharmaceutics, 2013, 454, 21-30.	5.2	111
50	Regulating cancer associated fibroblasts with losartan-loaded injectable peptide hydrogel to potentiate chemotherapy in inhibiting growth and lung metastasis of triple negative breast cancer. Biomaterials, 2017, 144, 60-72.	11.4	111
51	Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064Ânm-laser-driven photothermal agent. Biomaterials, 2015, 52, 407-416.	11.4	107
52	Inflammatory Monocytes Loading Protease-Sensitive Nanoparticles Enable Lung Metastasis Targeting and Intelligent Drug Release for Anti-Metastasis Therapy. Nano Letters, 2017, 17, 5546-5554.	9.1	107
53	Engineering Nanoparticles to Reprogram the Tumor Immune Microenvironment for Improved Cancer Immunotherapy. Theranostics, 2019, 9, 7981-8000.	10.0	106
54	Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharmaceutica Sinica B, 2022, 12, 3028-3048.	12.0	103

#	Article	IF	CITATIONS
55	The use of lipid-coated nanodiamond to improve bioavailability and efficacy of sorafenib in resisting metastasis of gastric cancer. Biomaterials, 2014, 35, 4565-4572.	11.4	101
56	Tumorâ€Penetrating Nanotherapeutics Loading a Nearâ€Infrared Probe Inhibit Growth and Metastasis of Breast Cancer. Advanced Functional Materials, 2015, 25, 2831-2839.	14.9	96
57	Regulating Glucose Metabolism with Prodrug Nanoparticles for Promoting Photoimmunotherapy of Pancreatic Cancer. Advanced Science, 2021, 8, 2002746.	11.2	96
58	Engineering Stimuliâ€Activatable Boolean Logic Prodrug Nanoparticles for Combination Cancer Immunotherapy. Advanced Materials, 2020, 32, e1907210.	21.0	96
59	Dual pH-sensitive micelles with charge-switch for controlling cellular uptake and drug release to treat metastatic breast cancer. Biomaterials, 2017, 114, 44-53.	11.4	95
60	Overcoming multidrug resistance by co-delivery of Mdr-1 and survivin-targeting RNA with reduction-responsible cationic poly (\hat{l}^2 -amino esters). Biomaterials, 2012, 33, 6495-6506.	11.4	94
61	Engineering nanomedicines through boosting immunogenic cell death for improved cancer immunotherapy. Acta Pharmacologica Sinica, 2020, 41, 986-994.	6.1	93
62	Engineering Polymeric Prodrug Nanoplatform for Vaccination Immunotherapy of Cancer. Nano Letters, 2020, 20, 4393-4402.	9.1	93
63	Bioinspired lipoproteins-mediated photothermia remodels tumor stroma to improve cancer cell accessibility of second nanoparticles. Nature Communications, 2019, 10, 3322.	12.8	91
64	Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infra-red absorption. Nanoscale, 2013, 5, 6469.	5.6	87
65	Triple-Layered pH-Responsive Micelleplexes Loaded with siRNA and Cisplatin Prodrug for NF-Kappa B Targeted Treatment of Metastatic Breast Cancer. Theranostics, 2016, 6, 14-27.	10.0	86
66	Hydrophobic interaction mediating self-assembled nanoparticles of succinobucol suppress lung metastasis of breast cancer by inhibition of VCAM-1 expression. Journal of Controlled Release, 2015, 205, 162-171.	9.9	84
67	Overview of recent advances in liposomal nanoparticle-based cancer immunotherapy. Acta Pharmacologica Sinica, 2019, 40, 1129-1137.	6.1	84
68	Simultaneous inhibition of metastasis and growth of breast cancer by co-delivery of twist shRNA and paclitaxel using pluronic P85-PEI/TPGS complex nanoparticles. Biomaterials, 2013, 34, 1581-1590.	11.4	83
69	Hydrophobic-carbon-dot-based dual-emission micelle for ratiometric fluorescence biosensing and imaging of Cu 2+ in liver cells. Biosensors and Bioelectronics, 2017, 92, 101-108.	10.1	83
70	Codelivery of Sorafenib and Curcumin by Directed Self-Assembled Nanoparticles Enhances Therapeutic Effect on Hepatocellular Carcinoma. Molecular Pharmaceutics, 2015, 12, 922-931.	4.6	82
71	Tumorâ€Microenvironmentâ€Adaptive Nanoparticles Codeliver Paclitaxel and siRNA to Inhibit Growth and Lung Metastasis of Breast Cancer. Advanced Functional Materials, 2016, 26, 6033-6046.	14.9	81
72	Programmed Multiresponsive Vesicles for Enhanced Tumor Penetration and Combination Therapy of Tripleâ€Negative Breast Cancer. Advanced Functional Materials, 2017, 27, 1606530.	14.9	80

#	Article	IF	Citations
73	Nanoparticles-mediated reoxygenation strategy relieves tumor hypoxia for enhanced cancer therapy. Journal of Controlled Release, 2020, 319, 25-45.	9.9	80
74	Engineering autologous tumor cell vaccine to locally mobilize antitumor immunity in tumor surgical bed. Science Advances, 2020, 6, eaba4024.	10.3	78
75	Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials, 2021, 270, 120709.	11.4	77
76	Versatile Prodrug Nanoparticles for Acidâ€Triggered Precise Imaging and Organelleâ€Specific Combination Cancer Therapy. Advanced Functional Materials, 2016, 26, 7431-7442.	14.9	76
77	The characteristics and performance of a multifunctional nanoassembly system for the co-delivery of docetaxel and iSur-pDNA in a mouse hepatocellular carcinoma model. Biomaterials, 2010, 31, 916-922.	11.4	73
78	A TPGS-incorporating nanoemulsion of paclitaxel circumvents drug resistance in breast cancer. International Journal of Pharmaceutics, 2014, 471, 206-213.	5.2	73
79	Albumin Biomimetic Nanocorona Improves Tumor Targeting and Penetration for Synergistic Therapy of Metastatic Breast Cancer. Advanced Functional Materials, 2017, 27, 1605679.	14.9	73
80	Theranostic Prodrug Vesicles for Reactive Oxygen Speciesâ€Triggered Ultrafast Drug Release and Localâ€Regional Therapy of Metastatic Tripleâ€Negative Breast Cancer. Advanced Functional Materials, 2017, 27, 1703674.	14.9	73
81	Traceable Bioinspired Nanoparticle for the Treatment of Metastatic Breast Cancer via NIRâ€√rigged Intracellular Delivery of Methylene Blue and Cisplatin. Advanced Materials, 2018, 30, e1802378.	21.0	7 3
82	Selective and sensitive visualization of endogenous nitric oxide in living cells and animals by a Si-rhodamine deoxylactam-based near-infrared fluorescent probe. Chemical Science, 2017, 8, 6857-6864.	7.4	71
83	Engineering Prodrug Nanomedicine for Cancer Immunotherapy. Advanced Science, 2020, 7, 2002365.	11.2	71
84	Selective Inhibition of STRN3-Containing PP2A Phosphatase Restores Hippo Tumor-Suppressor Activity in Gastric Cancer. Cancer Cell, 2020, 38, 115-128.e9.	16.8	70
85	Epidermal Growth Factor–PEG Functionalized PAMAM-Pentaethylenehexamine Dendron for Targeted Gene Delivery Produced by Click Chemistry. Biomacromolecules, 2011, 12, 2039-2047.	5.4	69
86	Bioengineered Macrophages Can Responsively Transform into Nanovesicles To Target Lung Metastasis. Nano Letters, 2018, 18, 4762-4770.	9.1	69
87	Supramolecular Prodrug Nanovectors for Active Tumor Targeting and Combination Immunotherapy of Colorectal Cancer. Advanced Science, 2020, 7, 1903332.	11.2	66
88	Light-Activated Core–Shell Nanoparticles for Spatiotemporally Specific Treatment of Metastatic Triple-Negative Breast Cancer. ACS Nano, 2018, 12, 2789-2802.	14.6	64
89	Smart Nanosized Drug Delivery Systems Inducing Immunogenic Cell Death for Combination with Cancer Immunotherapy. Accounts of Chemical Research, 2020, 53, 1761-1772.	15.6	64
90	iRGD Conjugated TPGS Mediates Codelivery of Paclitaxel and Survivin shRNA for the Reversal of Lung Cancer Resistance. Molecular Pharmaceutics, 2014, 11, 2579-2591.	4.6	63

#	Article	IF	Citations
91	Induction of apoptosis in non-small cell lung cancer by downregulation of MDM2 using pH-responsive PMPC-b-PDPA/siRNA complex nanoparticles. Biomaterials, 2013, 34, 2738-2747.	11.4	62
92	Deep Tumorâ€Penetrated Nanocages Improve Accessibility to Cancer Stem Cells for Photothermalâ€Chemotherapy of Breast Cancer Metastasis. Advanced Science, 2018, 5, 1801012.	11.2	62
93	Reversal of Lung Cancer Multidrug Resistance by pH-Responsive Micelleplexes Mediating Co-Delivery of siRNA and Paclitaxel. Macromolecular Bioscience, 2014, 14, 100-109.	4.1	61
94	Near infrared light-actuated gold nanorods with cisplatin–polypeptide wrapping for targeted therapy of triple negative breast cancer. Nanoscale, 2015, 7, 14854-14864.	5.6	61
95	Shrapnel nanoparticles loading docetaxel inhibit metastasis and growth of breast cancer. Biomaterials, 2015, 64, 10-20.	11.4	61
96	Iron-Based Theranostic Nanoplatform for Improving Chemodynamic Therapy of Cancer. ACS Biomaterials Science and Engineering, 2020, 6, 4834-4845.	5.2	61
97	From Design to Clinic: Engineered Nanobiomaterials for Immune Normalization Therapy of Cancer. Advanced Materials, 2021, 33, e2008094.	21.0	60
98	In vitro and in vivo evaluation of donepezil-sustained release microparticles for the treatment of Alzheimer's disease. Biomaterials, 2007, 28, 1882-1888.	11.4	58
99	Dynamic covalent chemistry-regulated stimuli-activatable drug delivery systems for improved cancer therapy. Chinese Chemical Letters, 2020, 31, 1051-1059.	9.0	57
100	Oxygen-Delivering Polyfluorocarbon Nanovehicles Improve Tumor Oxygenation and Potentiate Photodynamic-Mediated Antitumor Immunity. ACS Nano, 2021, 15, 5405-5419.	14.6	57
101	Oneâ€Step Microfluidic Synthesis of Nanocomplex with Tunable Rigidity and Acidâ€Switchable Surface Charge for Overcoming Drug Resistance. Small, 2017, 13, 1603109.	10.0	56
102	Polydopamineâ€Functionalized Graphene Oxide Loaded with Gold Nanostars and Doxorubicin for Combined Photothermal and Chemotherapy of Metastatic Breast Cancer. Advanced Healthcare Materials, 2016, 5, 2227-2236.	7.6	54
103	Rational Design of Tumor Microenvironmentâ€Activated Micelles for Programed Targeting of Breast Cancer Metastasis. Advanced Functional Materials, 2018, 28, 1705622.	14.9	54
104	Reversal of multidrug resistance by reduction-sensitive linear cationic click polymer/iMDR1-pDNA complex nanoparticles. Biomaterials, 2011, 32, 1738-1747.	11.4	53
105	The inhibition of metastasis and growth of breast cancer by blocking the NF-ήB signaling pathway using bioreducible PEI-based/p65 shRNA complex nanoparticles. Biomaterials, 2013, 34, 5381-5390.	11.4	53
106	Stimuliâ€activatable nanomedicines for chemodynamic therapy of cancer. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1614.	6.1	53
107	Intracellular pH-activated PEG-b-PDPA wormlike micelles for hydrophobic drug delivery. Polymer Chemistry, 2013, 4, 5052.	3.9	52
108	Hydrogen-bonded and reduction-responsive micelles loading atorvastatin for therapy of breast cancer metastasis. Biomaterials, 2014, 35, 7574-7587.	11.4	51

#	Article	IF	Citations
109	Poly(ε-caprolactone)-Block-poly(ethyl Ethylene Phosphate) Micelles for Brain-Targeting Drug Delivery: In Vitro and In Vivo Valuation. Pharmaceutical Research, 2010, 27, 2657-2669.	3.5	50
110	Smart nanoparticles improve therapy for drug-resistant tumors by overcoming pathophysiological barriers. Acta Pharmacologica Sinica, 2017, 38, 1-8.	6.1	50
111	Copackaging photosensitizer and PD-L1 siRNA in a nucleic acid nanogel for synergistic cancer photoimmunotherapy. Science Advances, 2022, 8, eabn2941.	10.3	50
112	Porous starch based self-assembled nano-delivery system improves the oral absorption of lipophilic drug. International Journal of Pharmaceutics, 2013, 444, 162-168.	5.2	49
113	Nanohybrid systems of non-ionic surfactant inserting liposomes loading paclitaxel for reversal of multidrug resistance. International Journal of Pharmaceutics, 2012, 422, 390-397.	5.2	48
114	Treatment of Malignant Brain Tumor by Tumorâ€Triggered Programmed Wormlike Micelles with Precise Targeting and Deep Penetration. Advanced Functional Materials, 2016, 26, 4201-4212.	14.9	48
115	Acid-Promoted D-A-D Type Far-Red Fluorescent Probe with High Photostability for Lysosomal Nitric Oxide Imaging. Analytical Chemistry, 2018, 90, 7953-7962.	6.5	48
116	Recent advances in nanosized drug delivery systems for overcoming the barriers to anti-PD immunotherapy of cancer. Nano Today, 2019, 29, 100801.	11.9	48
117	A self-assembled nanocarrier loading teniposide improves the oral delivery and drug concentration in tumor. Journal of Controlled Release, 2013, 166, 30-37.	9.9	47
118	Ly6C ^{hi} Monocytes Delivering pHâ€Sensitive Micelle Loading Paclitaxel Improve Targeting Therapy of Metastatic Breast Cancer. Advanced Functional Materials, 2017, 27, 1701093.	14.9	46
119	Bioreducible poly (\hat{l}^2 -amino esters)/shRNA complex nanoparticles for efficient RNA delivery. Journal of Controlled Release, 2011, 151, 35-44.	9.9	45
120	A pH-Responsive Host-guest Nanosystem Loading Succinobucol Suppresses Lung Metastasis of Breast Cancer. Theranostics, 2016, 6, 435-445.	10.0	45
121	Cooperative Treatment of Metastatic Breast Cancer Using Host-Guest Nanoplatform Coloaded with Docetaxel and siRNA. Small, 2016, 12, 488-498.	10.0	45
122	pH-Sensitive Nano-Complexes Overcome Drug Resistance and Inhibit Metastasis of Breast Cancer by Silencing Akt Expression. Theranostics, 2017, 7, 4204-4216.	10.0	45
123	Overcoming immune resistance by sequential prodrug nanovesicles for promoting chemoimmunotherapy of cancer. Nano Today, 2021, 36, 101025.	11.9	45
124	Engineering Nanoscale Artificial Antigen-Presenting Cells by Metabolic Dendritic Cell Labeling to Potentiate Cancer Immunotherapy. Nano Letters, 2021, 21, 2094-2103.	9.1	44
125	Engineering Oxaliplatin Prodrug Nanoparticles for Second Nearâ€Infrared Fluorescence Imagingâ€Guided Immunotherapy of Colorectal Cancer. Small, 2021, 17, e2007882.	10.0	44
126	Stable Metal–Organic Frameworks for Fluorescent Detection of Tetracycline Antibiotics. Inorganic Chemistry, 2022, 61, 8015-8021.	4.0	44

#	Article	IF	CITATIONS
127	Tumorâ€Activated Sizeâ€Enlargeable Bioinspired Lipoproteins Access Cancer Cells in Tumor to Elicit Antiâ€Tumor Immune Responses. Advanced Materials, 2020, 32, e2002380.	21.0	43
128	Multi-targeted inhibition of tumor growth and lung metastasis by redox-sensitive shell crosslinked micelles loading disulfiram. Nanotechnology, 2014, 25, 125102.	2.6	42
129	Emerging Approaches of Cellâ€Based Nanosystems to Target Cancer Metastasis. Advanced Functional Materials, 2019, 29, 1903441.	14.9	41
130	Influence of the Molecular Weight of Bioreducible Oligoethylenimine Conjugates on the Polyplex Transfection Properties. AAPS Journal, 2009, 11, 445-55.	4.4	40
131	Hepatocellular Carcinoma Growth Retardation and PD-1 Blockade Therapy Potentiation with Synthetic High-density Lipoprotein. Nano Letters, 2019, 19, 5266-5276.	9.1	40
132	Simultaneous Inhibition of Tumor Growth and Angiogenesis for Resistant Hepatocellular Carcinoma by Co-delivery of Sorafenib and Survivin Small Hairpin RNA. Molecular Pharmaceutics, 2014, 11, 3342-3351.	4.6	39
133	Tumor microenvironment-responsive docetaxel-loaded micelle combats metastatic breast cancer. Science Bulletin, 2019, 64, 91-100.	9.0	38
134	Engineering Versatile Nanoparticles for Nearâ€Infrared Lightâ€Tunable Drug Release and Photothermal Degradation of Amyloid β. Advanced Functional Materials, 2020, 30, 1908473.	14.9	38
135	Cell-penetrating peptide-based nanovehicles potentiate lymph metastasis targeting and deep penetration for anti-metastasis therapy. Theranostics, 2018, 8, 3597-3610.	10.0	36
136	Endogenous Stimuliâ€Activatable Nanomedicine for Immune Theranostics for Cancer. Advanced Functional Materials, 2021, 31, 2100386.	14.9	36
137	Engineering Chameleon Prodrug Nanovesicles to Increase Antigen Presentation and Inhibit PD‣1 Expression for Circumventing Immune Resistance of Cancer. Advanced Materials, 2021, 33, e2102668.	21.0	36
138	Triplex molecular beacons for sensitive recognition of melamine based on abasic-site-containing DNA and fluorescent silver nanoclusters. Chemical Communications, 2015, 51, 7958-7961.	4.1	34
139	Progress of Cellâ€Derived Biomimetic Drug Delivery Systems for Cancer Therapy. Advanced Therapeutics, 2018, 1, 1800053.	3.2	34
140	Walking Dead Tumor Cells for Targeted Drug Delivery Against Lung Metastasis of Tripleâ€Negative Breast Cancer. Advanced Materials, 2022, 34, .	21.0	34
141	pHâ€Responsive Wormlike Micelles with Sequential Metastasis Targeting Inhibit Lung Metastasis of Breast Cancer. Advanced Healthcare Materials, 2016, 5, 439-448.	7.6	33
142	A Self-Assembled Ratiometric Polymeric Nanoprobe for Highly Selective Fluorescence Detection of Hydrogen Peroxide. Langmuir, 2017, 33, 3287-3295.	3.5	33
143	Nanomedicine and cancer immunotherapy. Acta Pharmacologica Sinica, 2020, 41, 879-880.	6.1	33
144	Cancer nanomedicine meets immunotherapy: opportunities and challenges. Acta Pharmacologica Sinica, 2020, 41, 954-958.	6.1	33

#	Article	IF	Citations
145	Reactive Glycolysis Metaboliteâ€Activatable Nanotheranostics for NIRâ€II Fluorescence Imagingâ€Guided Phototherapy of Cancer. Advanced Functional Materials, 2022, 32, .	14.9	32
146	Reprogramming Tumor Associated Macrophages toward M1 Phenotypes with Nanomedicine for Anticancer Immunotherapy. Advanced Therapeutics, 2020, 3, 1900181.	3.2	31
147	Molecular Imaging for Cancer Immunotherapy: Seeing Is Believing. Bioconjugate Chemistry, 2020, 31, 404-415.	3.6	31
148	Acid-activatible micelleplex delivering siRNA-PD-L1 for improved cancer immunotherapy of CDK4/6 inhibition. Chinese Chemical Letters, 2021, 32, 1929-1936.	9.0	31
149	Bispecific prodrug nanoparticles circumventing multiple immune resistance mechanisms for promoting cancer immunotherapy. Acta Pharmaceutica Sinica B, 2022, 12, 2695-2709.	12.0	31
150	Reversal of Multidrug Resistance by Mitochondrial Targeted Self-Assembled Nanocarrier Based on Stearylamine. Molecular Pharmaceutics, 2013, 10, 2426-2434.	4.6	30
151	Bioinspired Multivalent Peptide Nanotubes for Sialic Acid Targeting and Imagingâ€Guided Treatment of Metastatic Melanoma. Small, 2019, 15, e1900157.	10.0	30
152	Phospholipid membrane-decorated deep-penetrated nanocatalase relieve tumor hypoxia to enhance chemo-photodynamic therapy. Acta Pharmaceutica Sinica B, 2020, 10, 2246-2257.	12.0	30
153	Peptide Nanotubeâ€Templated Biomineralization of Cu _{2â^'} <i>_x</i> S Nanoparticles for Combination Treatment of Metastatic Tumor. Small, 2019, 15, e1904397.	10.0	29
154	Targeting peptide-decorated biomimetic lipoproteins improve deep penetration and cancer cells accessibility in solid tumor. Acta Pharmaceutica Sinica B, 2020, 10, 529-545.	12.0	29
155	Silibinin and indocyanine green-loaded nanoparticles inhibit the growth and metastasis of mammalian breast cancer cells in vitro. Acta Pharmacologica Sinica, 2016, 37, 941-949.	6.1	27
156	Co-delivery of Cu(I) chelator and chemotherapeutics as a new strategy for tumor theranostic. Journal of Controlled Release, 2020, 321, 483-496.	9.9	27
157	Light-controllable charge-reversal nanoparticles with polyinosinic-polycytidylic acid for enhancing immunotherapy of triple negative breast cancer. Acta Pharmaceutica Sinica B, 2022, 12, 353-363.	12.0	27
158	Nanomedicine Strategies to Circumvent Intratumor Extracellular Matrix Barriers for Cancer Therapy. Advanced Healthcare Materials, 2022, 11, e2101428.	7.6	27
159	Proteaseâ€Activatable Hybrid Nanoprobe for Tumor Imaging. Advanced Functional Materials, 2014, 24, 5443-5453.	14.9	26
160	Nanoassembly of Probucol Enables Novel Therapeutic Efficacy in the Suppression of Lung Metastasis of Breast Cancer. Small, 2014, 10, 4735-4745.	10.0	26
161	Inhibition of Breast Cancer Metastasis by Pluronic Copolymers with Moderate Hydrophilic–Lipophilic Balance. Molecular Pharmaceutics, 2015, 12, 3323-3331.	4.6	26
162	Gut Microbiota: Influence on Carcinogenesis and Modulation Strategies by Drug Delivery Systems to Improve Cancer Therapy. Advanced Science, 2021, 8, 2003542.	11.2	26

#	Article	IF	Citations
163	Photodynamic micelles for amyloid \hat{l}^2 degradation and aggregation inhibition. Chemical Communications, 2016, 52, 12044-12047.	4.1	25
164	In Vivo Environmentâ€Adaptive Nanocomplex with Tumor Cell–Specific Cytotoxicity Enhances T Cells Infiltration and Improves Cancer Therapy. Small, 2019, 15, e1902822.	10.0	25
165	Recent Progress in the Design and Application of Supramolecular Peptide Hydrogels in Cancer Therapy. Advanced Healthcare Materials, 2021, 10, e2001239.	7.6	25
166	A bispecific nanomodulator to potentiate photothermal cancer immunotherapy. Nano Today, 2022, 44, 101466.	11.9	24
167	An arylboronate-based fluorescent probe for peroxynitrite with fast response and high selectivity. Analytical Methods, 2015, 7, 4885-4888.	2.7	23
168	Injectable peptide hydrogel as intraperitoneal triptolide depot for the treatment of orthotopic hepatocellular carcinoma. Acta Pharmaceutica Sinica B, 2019, 9, 1050-1060.	12.0	23
169	Tumor-permeated bioinspired theranostic nanovehicle remodels tumor immunosuppression for cancer therapy. Biomaterials, 2021, 269, 120609.	11.4	23
170	Bioinspired magnetic nanocomplexes amplifying STING activation of tumor-associated macrophages to potentiate cancer immunotherapy. Nano Today, 2022, 43, 101400.	11.9	23
171	Nonâ€viral gene delivery for cancer immunotherapy. Journal of Gene Medicine, 2019, 21, e3092.	2.8	22
172	Improving Cancer Vaccine Efficiency by Nanomedicine. Advanced Biology, 2019, 3, e1800287.	3.0	22
173	Tumor Cellsâ€Selective Bionic Nanodevice Exploiting Heparanase Combats Metastatic Breast Cancer. Advanced Functional Materials, 2018, 28, 1707289.	14.9	21
174	Recent progress in supramolecular peptide assemblies as virus mimics for cancer immunotherapy. Biomaterials Science, 2020, 8, 1045-1057.	5.4	20
175	Nanovaccineâ€Mediated Cell Selective Delivery of Neoantigens Potentiating Adoptive Dendritic Cell Transfer for Personalized Immunization. Advanced Functional Materials, 2021, 31, 2104068.	14.9	19
176	Bioinspired Lipoproteins of Furoxans–Oxaliplatin Remodel Physical Barriers in Tumor to Potentiate Tâ€Cell Infiltration. Advanced Materials, 2022, 34, e2110614.	21.0	19
177	Gold nanomaterials for treatment of metastatic cancer. Science China Chemistry, 2016, 59, 984-990.	8.2	18
178	Imaging Tumorous Methylglyoxal by an Activatable Near-Infrared Fluorescent Probe for Monitoring Glyoxalase 1 Activity. Analytical Chemistry, 2019, 91, 15577-15584.	6.5	17
179	Engineering immunogenic cell death with nanosized drug delivery systems improving cancer immunotherapy. Current Opinion in Biotechnology, 2020, 66, 36-43.	6.6	17
180	M2 macrophage microvesicle-inspired nanovehicles improve accessibility to cancer cells and cancer stem cells in tumors. Journal of Nanobiotechnology, 2021, 19, 397.	9.1	17

#	Article	IF	CITATIONS
181	Phospholipid-mimic oxaliplatin prodrug liposome for treatment of the metastatic triple negative breast cancer. Biomaterials Science, 2017, 5, 1522-1525.	5.4	16
182	Metal-drug nanoparticles-mediated osteolytic microenvironment regulation for enhanced radiotherapy of orthotopic osteosarcoma. Chemical Engineering Journal, 2021, 417, 128103.	12.7	16
183	Stimuli-activatable nanomaterials for phototherapy of cancer. Biomedical Materials (Bristol), 2021, 16, 042008.	3.3	16
184	Linear Cationic Click Polymers/DNA Nanoparticles: In Vitro Structure–Activity Relationship and In Vivo Evaluation for Gene Delivery. Bioconjugate Chemistry, 2011, 22, 1153-1161.	3.6	15
185	Coâ€delivery of Cellâ€permeable Chimeric Apoptosis AVPIR ₈ Peptide/p53 DNA for Cocktail Therapy. Advanced Functional Materials, 2013, 23, 6068-6075.	14.9	15
186	Orally delivered legumain-activated nanovehicles improve tumor accumulation and penetration for combinational photothermal-chemotherapy. Journal of Controlled Release, 2020, 323, 59-70.	9.9	14
187	Photoactivatable nanogenerators of reactive species for cancer therapy. Bioactive Materials, 2021, 6, 4301-4318.	15.6	14
188	Engineering Bioinspired Nanomedicines to Mitigate the Resistance to Cancer Immunotherapy. Accounts of Materials Research, 2022, 3, 697-708.	11.7	14
189	NIRâ€Triggered Release of Nitric Oxide with Upconversion Nanoparticles Inhibits Platelet Aggregation in Blood Samples. Particle and Particle Systems Characterization, 2018, 35, 1700281.	2.3	12
190	Bio-inspired amyloid polypeptides: From self-assembly to nanostructure design and biotechnological applications. Applied Materials Today, 2021, 22, 100966.	4.3	11
191	Directed Self-assembled Nanoparticles of Probucol Improve Oral Delivery: Fabrication, Performance and Correlation. Pharmaceutical Research, 2014, 31, 2266-2275.	3.5	10
192	Design of heterostructured hybrids comprising ultrathin 2D bismuth tungstate nanosheets reinforced by chloramphenicol imprinted polymers used as biomimetic interfaces for mass-sensitive detection. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110775.	5.0	10
193	Engineering Nanorobots for Tumorâ€Targeting Drug Delivery: From Dynamic Control to Stimuliâ€Responsive Strategy. ChemBioChem, 2021, 22, 3369-3380.	2.6	10
194	Strategies of engineering nanomedicines for tumor retention. Journal of Controlled Release, 2022, 346, 193-211.	9.9	10
195	Chemical antagonism between photodynamic agents and chemotherapeutics: mechanism and avoidance. Chemical Communications, 2017, 53, 12438-12441.	4.1	8
196	Apoferritin nanocages loading mertansine enable effective eradiation of cancer stem-like cells in vitro. International Journal of Pharmaceutics, 2018, 553, 201-209.	5.2	8
197	Long wavelength emission fluorescent probe for highly selective detection of cysteine in living cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 264, 120247.	3.9	7
198	Bioreducible Micelles with Endosomal Buffering and Multidrug Resistance-Reversing Function Enhance Anti-Tumor Efficacy of Doxorubicin. Journal of Biomedical Nanotechnology, 2015, 11, 1764-1775.	1.1	6

#	Article	IF	CITATIONS
199	Nano drug delivery systems improve metastatic breast cancer therapy. Medical Review, 2021, 1, 244-274.	1.2	4
200	Photothermal Therapy: Tumorâ€Penetrating Nanotherapeutics Loading a Nearâ€Infrared Probe Inhibit Growth and Metastasis of Breast Cancer (Adv. Funct. Mater. 19/2015). Advanced Functional Materials, 2015, 25, 2940-2940.	14.9	2
201	Synthetic nucleic acid nanomedicines: A Chinese perspective. Journal of Gene Medicine, 2019, 21, e3111.	2.8	2
202	Drug Delivery: Oneâ€Step Microfluidic Synthesis of Nanocomplex with Tunable Rigidity and Acidâ€Switchable Surface Charge for Overcoming Drug Resistance (Small 9/2017). Small, 2017, 13, .	10.0	1
203	A high brightness probe of polymer nanoparticles for biological imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 192, 228-235.	3.9	1
204	Stimuli-Sheddable Nanomedicine Overcoming Pathophysiological Barriers for Potentiating Immunotherapy of Cancer. Journal of Biomedical Nanotechnology, 2021, 17, 1486-1509.	1.1	1
205	Amplifying antitumor T cell immunity with versatile drug delivery systems for personalized cancer immunotherapy. Medicine in Drug Discovery, 2022, 13, 100116.	4.5	1
206	Cancer Therapy: Programmed Multiresponsive Vesicles for Enhanced Tumor Penetration and Combination Therapy of Tripleâ€Negative Breast Cancer (Adv. Funct. Mater. 20/2017). Advanced Functional Materials, 2017, 27, .	14.9	0
207	Delivery strategies for immune checkpoint blockade. , 2022, , 1-29.		O