
Fei Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/402165/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Research and Therapy, 2013, 4, 34.	5.5	529
2	Human Mesenchymal Stem Cell Derived Exosomes Alleviate Type 2 Diabetes Mellitus by Reversing Peripheral Insulin Resistance and Relieving β-Cell Destruction. ACS Nano, 2018, 12, 7613-7628.	14.6	287
3	hucMSC Exosome-Derived GPX1 Is Required for the Recovery of Hepatic Oxidant Injury. Molecular Therapy, 2017, 25, 465-479.	8.2	238
4	Human mesenchymal stem cells isolated from the umbilical cord. Cell Biology International, 2008, 32, 8-15.	3.0	195
5	Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Inflammatory Bowel Disease in Mice. BioMed Research International, 2017, 2017, 1-12.	1.9	158
6	Mesenchymal stem cells from human umbilical cords ameliorate mouse hepatic injury <i>in vivo</i> . Liver International, 2009, 29, 356-365.	3.9	133
7	Human Umbilical Cord MSC-Derived Exosomes Suppress the Development of CCl ₄ -Induced Liver Injury through Antioxidant Effect. Stem Cells International, 2018, 2018, 1-11.	2.5	117
8	Improved therapeutics of modified mesenchymal stem cells: an update. Journal of Translational Medicine, 2020, 18, 42.	4.4	108
9	Bone marrow mesenchymal stem cells ameliorate rat acute renal failure by differentiation into renal tubular epithelial-like cells. International Journal of Molecular Medicine, 2008, 22, 325-32.	4.0	106
10	Emerging Role of Mesenchymal Stem Cell-derived Exosomes in Regenerative Medicine. Current Stem Cell Research and Therapy, 2019, 14, 482-494.	1.3	105
11	Exosome-transmitted lncRNA UFC1 promotes non-small-cell lung cancer progression by EZH2-mediated epigenetic silencing of PTEN expression. Cell Death and Disease, 2020, 11, 215.	6.3	102
12	Engineered neutrophil-derived exosome-like vesicles for targeted cancer therapy. Science Advances, 2022, 8, eabj8207.	10.3	94
13	Exosomeâ€mediated effects and applications in inflammatory bowel disease. Biological Reviews, 2020, 95, 1287-1307.	10.4	89
14	Mesenchymal stem cell-secreted soluble signaling molecules potentiate tumor growth. Cell Cycle, 2011, 10, 3198-3207.	2.6	83
15	Immunosuppressive effects of mesenchymal stem cells in collagen-induced mouse arthritis. Inflammation Research, 2010, 59, 219-225.	4.0	82
16	3,3′-Diindolylmethane stimulates exosomal Wnt11 autocrine signaling in human umbilical cord mesenchymal stem cells to enhance wound healing. Theranostics, 2017, 7, 1674-1688.	10.0	81
17	Exosomes from Human Umbilical Cord Mesenchymal Stem Cells: Identification, Purification, and Biological Characteristics. Stem Cells International, 2016, 2016, 1-11.	2.5	80
18	HucMSCâ€exosomes carrying miRâ€326 inhibit neddylation to relieve inflammatory bowel disease in mice. Clinical and Translational Medicine, 2020, 10, e113.	4.0	79

Γει Μαο

#	Article	IF	CITATIONS
19	CXCL5 promotes gastric cancer metastasis by inducing epithelial-mesenchymal transition and activating neutrophils. Oncogenesis, 2020, 9, 63.	4.9	71
20	Mesenchymal stem cells and their therapeutic applications in inflammatory bowel disease. Oncotarget, 2017, 8, 38008-38021.	1.8	69
21	hucMSC-derived exosomes attenuate colitis by regulating macrophage pyroptosis via the miR-378a-5p/NLRP3 axis. Stem Cell Research and Therapy, 2021, 12, 416.	5.5	64
22	SALL4 activates TGF-β/SMAD signaling pathway to induce EMT and promote gastric cancer metastasis. Cancer Management and Research, 2018, Volume 10, 4459-4470.	1.9	63
23	miR-155-5p inhibition promotes the transition of bone marrow mesenchymal stem cells to gastric cancer tissue derived MSC-like cells via NF-κB p65 activation. Oncotarget, 2016, 7, 16567-16580.	1.8	60
24	Metastasis regulation by PPARD expression in cancer cells. JCI Insight, 2017, 2, e91419.	5.0	58
25	Mesenchymal stem cells relieve fibrosis of <i>Schistosoma japonicum</i> -induced mouse liver injury. Experimental Biology and Medicine, 2012, 237, 585-592.	2.4	57
26	HucMSC-derived exosomes delivered BECN1 induces ferroptosis of hepatic stellate cells via regulating the xCT/GPX4 axis. Cell Death and Disease, 2022, 13, 319.	6.3	57
27	miRâ€ʿ498 inhibits the growth and metastasis of liver cancer by targeting ZEB2. Oncology Reports, 2019, 41, 1638-1648.	2.6	52
28	LINC00978 promotes the progression of hepatocellular carcinoma by regulating EZH2-mediated silencing of p21 and E-cadherin expression. Cell Death and Disease, 2019, 10, 752.	6.3	51
29	Mesenchymal stem cell–gut microbiota interaction in the repair of inflammatory bowel disease: an enhanced therapeutic effect. Clinical and Translational Medicine, 2019, 8, 31.	4.0	50
30	ALOX15 as a suppressor of inflammation and cancer: Lost in the link. Prostaglandins and Other Lipid Mediators, 2017, 132, 77-83.	1.9	47
31	HucMSC exosome-transported 14-3-3ζ prevents the injury of cisplatin to HK-2 cells by inducing autophagy in vitro. Cytotherapy, 2018, 20, 29-44.	0.7	37
32	15â€Lipoxygenaseâ€∃ suppression of colitisâ€associated colon cancer through inhibition of the ILâ€6/STAT3 signaling pathway. FASEB Journal, 2015, 29, 2359-2370.	0.5	36
33	Systematic Exposition of Mesenchymal Stem Cell for Inflammatory Bowel Disease and Its Associated Colorectal Cancer. BioMed Research International, 2018, 2018, 1-16.	1.9	33
34	Resveratrol Attenuates Inflammatory Bowel Disease in Mice by Regulating SUMO1. Biological and Pharmaceutical Bulletin, 2020, 43, 450-457.	1.4	33
35	Activation of Mesenchymal Stem Cells by Macrophages Prompts Human Gastric Cancer Growth through NF-κB Pathway. PLoS ONE, 2014, 9, e97569.	2.5	33
36	HucMSC exosomes-delivered 14-3-3î¶ enhanced autophagy via modulation of ATG16L in preventing cisplatin-induced acute kidney injury. American Journal of Translational Research (discontinued), 2018, 10, 101-113.	0.0	33

Fei Mao

#	Article	IF	CITATIONS
37	MicroRNA-146b, a Sensitive Indicator of Mesenchymal Stem Cell Repair of Acute Renal Injury. Stem Cells Translational Medicine, 2016, 5, 1406-1415.	3.3	32
38	Human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease through the regulation of 15-LOX-1 in macrophages. Biotechnology Letters, 2017, 39, 929-938.	2.2	32
39	Exosomes derived from human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease in mice through ubiquitination. American Journal of Translational Research (discontinued), 2018, 10, 2026-2036.	0.0	32
40	YAP signaling in gastric cancer-derived mesenchymal stem cells is critical for its promoting role in cancer progression. International Journal of Oncology, 2017, 51, 1055-1066.	3.3	27
41	MSC: immunoregulatory effects, roles on neutrophils and evolving clinical potentials. American Journal of Translational Research (discontinued), 2019, 11, 3890-3904.	0.0	26
42	Intestinal Fibrosis in Inflammatory Bowel Disease and the Prospects of Mesenchymal Stem Cell Therapy. Frontiers in Immunology, 2022, 13, 835005.	4.8	26
43	The Achievements and Challenges of Mesenchymal Stem Cell-Based Therapy in Inflammatory Bowel Disease and Its Associated Colorectal Cancer. Stem Cells International, 2020, 2020, 1-18.	2.5	25
44	Implications of lymphatic alterations in the pathogenesis and treatment of inflammatory bowel disease. Biomedicine and Pharmacotherapy, 2021, 140, 111752.	5.6	23
45	Human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease by inhibiting ERK phosphorylation in neutrophils. Inflammopharmacology, 2020, 28, 603-616.	3.9	22
46	The Emerging Clinical Application of m6A RNA Modification in Inflammatory Bowel Disease and Its Associated Colorectal Cancer. Journal of Inflammation Research, 2021, Volume 14, 3289-3306.	3.5	21
47	Anti-cancer drug 3,3′-diindolylmethane activates Wnt4 signaling to enhance gastric cancer cell stemness and tumorigenesis. Oncotarget, 2016, 7, 16311-16324.	1.8	21
48	Ubiquitination regulation of inflammatory responses through NF-κB pathway. American Journal of Translational Research (discontinued), 2018, 10, 881-891.	0.0	20
49	Crosstalk between mesenchymal stem cells and macrophages in inflammatory bowel disease and associated colorectal cancer. Wspolczesna Onkologia, 2017, 2, 91-97.	1.4	19
50	hucMSCs Attenuate IBD through Releasing miR148b-5p to Inhibit the Expression of 15-lox-1 in Macrophages. Mediators of Inflammation, 2019, 2019, 1-16.	3.0	19
51	SALL4 promotes gastric cancer progression via hexokinase II mediated glycolysis. Cancer Cell International, 2020, 20, 188.	4.1	19
52	CircHN1 affects cell proliferation and migration in gastric cancer. Journal of Clinical Laboratory Analysis, 2020, 34, e23433.	2.1	18
53	The role of 15-LOX-1 in colitis and colitis-associated colorectal cancer. Inflammation Research, 2015, 64, 661-669.	4.0	17
54	miR-374 mediates the malignant transformation of gastric cancer-associated mesenchymal stem cells in an experimental rat model. Oncology Reports, 2017, 38, 1473-1481.	2.6	17

Γει Μαο

#	Article	IF	CITATIONS
55	Identification of a novel YAP-14-3-3ζ negative feedback loop in gastric cancer. Oncotarget, 2017, 8, 71894-71910.	1.8	13
56	The gut metagenomics and metabolomics signature in patients with inflammatory bowel disease. Gut Pathogens, 2022, 14, .	3.4	13
57	Cellular and molecular mediators of lymphangiogenesis in inflammatory bowel disease. Journal of Translational Medicine, 2021, 19, 254.	4.4	12
58	The Effects of Mesenchymal Stem Cell on Colorectal Cancer. Stem Cells International, 2021, 2021, 1-14.	2.5	12
59	hucMSC-Derived Exosomes Alleviate the Deterioration of Colitis via the miR-146a/SUMO1 Axis. Molecular Pharmaceutics, 2022, 19, 484-493.	4.6	12
60	HucMSC-Ex carrying miR-203a-3p.2 ameliorates colitis through the suppression of caspase11/4-induced macrophage pyroptosis. International Immunopharmacology, 2022, 110, 108925.	3.8	10
61	Glycosylation in Cervical Cancer: New Insights and Clinical Implications. Frontiers in Oncology, 2021, 11, 706862.	2.8	9
62	Cancer stemness and metastatic potential of the novel tumor cell line K3: an inner mutated cell of bone marrow-derived mesenchymal stem cells. Oncotarget, 2017, 8, 39522-39533.	1.8	8
63	A novel method to isolate mesenchymal stem cells from mouse umbilical cord. Molecular Medicine Reports, 2018, 17, 861-869.	2.4	5
64	Regulatory Effect of Mesenchymal Stem Cells on T Cell Phenotypes in Autoimmune Diseases. Stem Cells International, 2021, 2021, 1-14.	2.5	5
65	Exosomes derived from human umbilical cord Wharton's jelly mesenchymal stem cells ameliorate experimental lymphedema. Clinical and Translational Medicine, 2021, 11, e384.	4.0	5
66	HucMSC-Ex alleviates inflammatory bowel disease via the lnc78583-mediated miR3202/HOXB13 pathway. Journal of Zhejiang University: Science B, 2022, 23, 423-431.	2.8	5
67	CircRNAs as promising biomarkers of inflammatory bowel disease and its associated-colorectal cancer. American Journal of Translational Research (discontinued), 2021, 13, 1580-1593.	0.0	4
68	Emerging role of protein modification in inflammatory bowel disease. Journal of Zhejiang University: Science B, 2022, 23, 173-188.	2.8	2
69	Treatment of ectomesenchymal stem cells-conditional medium in ulcerative colitis. Materials Express, 2021, 11, 1339-1346.	0.5	1
70	Characterization of an inhibitor of apoptosis gene (BmSurvivin-2) from the silkworm, Bombyx mori. Journal of Asia-Pacific Entomology, 2017, 20, 1156-1160.	0.9	0