Liping Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4020692/publications.pdf

Version: 2024-02-01

94433 69250 6,551 116 37 77 citations h-index g-index papers 120 120 120 9891 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Surface Chemistry Influences Implant Biocompatibility. Current Topics in Medicinal Chemistry, 2008, 8, 270-280.	2.1	671
2	Nanomaterial cytotoxicity is composition, size, and cell type dependent. Particle and Fibre Toxicology, 2010, 7, 22.	6.2	549
3	Inflammatory Responses to Biomaterials. American Journal of Clinical Pathology, 1995, 103, 466-471.	0.7	427
4	Molecular basis of biomaterial-mediated foreign body reactions. Blood, 2001, 98, 1231-1238.	1.4	385
5	Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials, 2012, 33, 7972-7983.	11.4	359
6	The effect of incorporation of SDF-1 \hat{l} ± into PLGA scaffolds on stem cell recruitment and the inflammatory response. Biomaterials, 2010, 31, 3997-4008.	11.4	251
7	Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2008, 4, 226-236.	3.3	203
8	Biofunctionalization of metallic implants by calcium phosphate coatings. Bioactive Materials, 2019, 4, 196-206.	15.6	173
9	An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration. Acta Biomaterialia, 2015, 16, 49-59.	8. 3	168
10	Biological Responses and Mechanisms of Human Bone Marrow Mesenchymal Stem Cells to Zn and Mg Biomaterials. ACS Applied Materials & Samp; Interfaces, 2017, 9, 27453-27461.	8.0	162
11	Method to Analyze Three-Dimensional Cell Distribution and Infiltration in Degradable Scaffolds. Tissue Engineering - Part C: Methods, 2008, 14, 319-331.	2.1	149
12	Development of a Temperature-Sensitive Composite Hydrogel for Drug Delivery Applications. Biotechnology Progress, 2006, 22, 118-125.	2.6	135
13	A Rabbit Model for Capsular Contracture: Development and Clinical Implications. Plastic and Reconstructive Surgery, 2006, 117, 1214-1219.	1.4	131
14	Histamine release and fibrinogen adsorption mediate acute inflammatory responses to biomaterial implants in humans. Journal of Translational Medicine, 2007, 5, 31.	4.4	126
15	Natural Responses to Unnatural Materials: A Molecular Mechanism for Foreign Body Reactions. Molecular Medicine, 1999, 5, 351-358.	4.4	117
16	Fibrinogen adsorption and host tissue responses to plasma functionalized surfaces., 1998, 42, 156-163.		111
17	Mechanical Strength, Biodegradation, and in Vitro and in Vivo Biocompatibility of Zn Biomaterials. ACS Applied Materials & Englishment (2019, 11, 6809-6819).	8.0	111
18	Surface chemistry influences implantâ€mediated host tissue responses. Journal of Biomedical Materials Research - Part A, 2008, 86A, 617-626.	4.0	105

#	Article	IF	Citations
19	Complement activation and inflammation triggered by model biomaterial surfaces. , 1998, 41, 333-340.		94
20	Molecular determinants of biocompatibility. Expert Review of Medical Devices, 2005, 2, 493-500.	2.8	82
21	The pivotal role of fibrocytes and mast cells in mediating fibrotic reactions to biomaterials. Biomaterials, 2011, 32, 8394-8403.	11.4	77
22	Low-Initial-Modulus Biodegradable Polyurethane Elastomers for Soft Tissue Regeneration. ACS Applied Materials & Diterfaces, 2017, 9, 2169-2180.	8.0	69
23	Viscoelastic Behavior and In Vivo Release Study of Microgel Dispersions with Inverse Thermoreversible Gelation. Biomacromolecules, 2008, 9, 142-148.	5.4	65
24	Zinc regulates vascular endothelial cell activity through zinc-sensing receptor ZnR/GPR39. American Journal of Physiology - Cell Physiology, 2018, 314, C404-C414.	4.6	64
25	InÂvivo and inÂvitro evaluation of hydroxyapatite nanoparticle morphology on the acute inflammatory response. Biomaterials, 2016, 90, 1-11.	11.4	63
26	Tissue responses to thermally-responsive hydrogel nanoparticles. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 1167-1180.	3.5	55
27	Triggerable Degradation of Polyurethanes for Tissue Engineering Applications. ACS Applied Materials & Lamp; Interfaces, 2015, 7, 20377-20388.	8.0	55
28	Phagocyte responses to degradable polymers. Journal of Biomedical Materials Research - Part A, 2007, 82A, 492-497.	4.0	53
29	Fluorescence imaging enabled urethane-doped citrate-based biodegradable elastomers. Biomaterials, 2013, 34, 4048-4056.	11.4	53
30	Mechanisms of fibrinogen domains: biomaterial interactions. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 1257-1266.	3.5	52
31	The effect of erythropoietin on autologous stem cell-mediated bone regeneration. Biomaterials, 2013, 34, 7364-7371.	11.4	50
32	Real time monitoring of biomaterial-mediated inflammatory responses via macrophage-targeting NIR nanoprobes. Biomaterials, 2011, 32, 9383-9390.	11.4	47
33	Biodegradable Nanoparticles Enhanced Adhesiveness of Mussel‣ike Hydrogels at Tissue Interface. Advanced Healthcare Materials, 2018, 7, e1701069.	7.6	47
34	Diagnostics for Wound Infections. Advances in Wound Care, 2021, 10, 317-327.	5.1	47
35	Species and Density of Implant Surface Chemistry Affect the Extent of Foreign Body Reactions. Langmuir, 2008, 24, 2015-2024.	3.5	46
36	Fibroblast/Fibrocyte: Surface Interaction Dictates Tissue Reactions to Micropillar Implants. Biomacromolecules, 2011, 12, 997-1005.	5.4	46

#	Article	IF	CITATIONS
37	Molecular responses of vascular smooth muscle cells and phagocytes to curcumin-eluting bioresorbable stent materials. Biomaterials, 2004, 25, 5333-5346.	11.4	45
38	Novel Polymeric Scaffolds Using Protein Microbubbles as Porogen and Growth Factor Carriers. Tissue Engineering - Part C: Methods, 2010, 16, 23-32.	2.1	44
39	Curcumin impregnation improves the mechanical properties and reduces the inflammatory response associated with poly(L-lactic acid) fiber. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 353-370.	3.5	40
40	Imaging in Chronic Wound Diagnostics. Advances in Wound Care, 2020, 9, 245-263.	5.1	40
41	Realâ€√ime Noninvasive Monitoring of In Vivo Inflammatory Responses using a pH Ratiometric Fluorescence Imaging Probe. Advanced Healthcare Materials, 2014, 3, 221-229.	7.6	38
42	Noninvasive assessment of localized inflammatory responses. Free Radical Biology and Medicine, 2012, 52, 218-226.	2.9	35
43	Development of dopant-free conductive bioelastomers. Scientific Reports, 2016, 6, 34451.	3.3	35
44	Influence of scaffold design on host immune and stem cell responses. Seminars in Immunology, 2017, 29, 62-71.	5.6	34
45	Novel harmine derivatives for tumor targeted therapy. Oncotarget, 2015, 6, 8988-9001.	1.8	31
46	The use of chemokine-releasing tissue engineering scaffolds in a model of inflammatory response-mediated melanoma cancer metastasis. Biomaterials, 2012, 33, 876-885.	11.4	30
47	Development of optical probes for in vivo imaging of polarized macrophages during foreign body reactions. Acta Biomaterialia, 2014, 10, 2945-2955.	8.3	30
48	<i>In Situ</i> Re-endothelialization <i>via</i> Multifunctional Nanoscaffolds. ACS Nano, 2014, 8, 10826-10836.	14.6	29
49	Studies of the cellular uptake of hydrogel nanospheres and microspheres by phagocytes, vascular endothelial cells, and smooth muscle cells. Journal of Biomedical Materials Research - Part A, 2009, 88A, 1020-1030.	4.0	26
50	Multifunctional near-infrared light-triggered biodegradable micelles for chemo- and photo-thermal combination therapy. Oncotarget, 2016, 7, 82170-82184.	1.8	26
51	Nanoparticle eluting-angioplasty balloons to treat cardiovascular diseases. International Journal of Pharmaceutics, 2019, 554, 212-223.	5. 2	25
52	Injectable Click Chemistry-based Bioadhesives for Accelerated Wound Closure. Acta Biomaterialia, 2020, 110, 95-104.	8.3	25
53	The participation of P- and E-selectins on biomaterial-mediated tissue responses. Journal of Biomedical Materials Research Part B, 2002, 62, 471-477.	3.1	22
54	The Mechanisms and Biomedical Applications of an NIR BODIPY-Based Switchable Fluorescent Probe. International Journal of Molecular Sciences, 2017, 18, 384.	4.1	22

#	Article	IF	Citations
55	An innovative peptide with high affinity to GPC3 for hepatocellular carcinoma diagnosis. Biomaterials Science, 2019, 7, 159-167.	5.4	22
56	Bacterial acidity-triggered antimicrobial activity of self-assembling peptide nanofibers. Journal of Materials Chemistry B, 2019, 7, 2915-2919.	5.8	22
57	Real-time detection of implant-associated neutrophil responses using a formyl peptide receptor-targeting NIR nanoprobe. International Journal of Nanomedicine, 2012, 7, 2057.	6.7	21
58	Imaging of Actively Proliferating Bacterial Infections by Targeting the Bacterial Metabolic Footprint with <scp>d</scp> -[5- ¹¹ C]-Glutamine. ACS Infectious Diseases, 2021, 7, 347-361.	3.8	20
59	Alternative strategies to manipulate fibrocyte involvement in the fibrotic tissue response: Pharmacokinetic inhibition and the feasibility of directed-adipogenic differentiation. Acta Biomaterialia, 2014, 10, 3108-3116.	8.3	19
60	Dual target gene therapy to EML4-ALK NSCLC by a gold nanoshell-based system. Theranostics, 2018, 8, 2621-2633.	10.0	19
61	A Device to Predict Short-Term Healing Outcome of Chronic Wounds. Advances in Wound Care, 2020, 9, 312-324.	5.1	19
62	Optical imaging of fibrin deposition to elucidate participation of mast cells in foreign body responses. Biomaterials, 2014, 35, 2089-2096.	11.4	18
63	Molecular responses of vascular smooth muscle cells to paclitaxel-eluting bioresorbable stent materials. Journal of Biomedical Materials Research Part B, 2004, 69A, 513-524.	3.1	16
64	Multi-Ligand Poly(l-Lactic-co-Glycolic Acid) Nanoparticles Inhibit Activation of Endothelial Cells. Journal of Cardiovascular Translational Research, 2013, 6, 570-578.	2.4	16
65	In vivo evaluation of medical device-associated inflammation using a macrophage-specific positron emission tomography (PET) imaging probe. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2044-2047.	2.2	16
66	Rapid repeatable inÂvivo detection of retinal reactive oxygen species. Experimental Eye Research, 2017, 161, 71-81.	2.6	16
67	A pretargeting nanoplatform for imaging and enhancing anti-inflammatory drug delivery. Bioactive Materials, 2020, 5, 1102-1112.	15.6	16
68	Recruitment of endogenous progenitor cells by erythropoietin loaded particles for in situ cartilage regeneration. Bioactive Materials, 2020, 5, 142-152.	15.6	16
69	Controlled Release from and Tissue Response to Physically Bonded Hydrogel Nanoparticle Assembly. Macromolecular Symposia, 2005, 227, 275-284.	0.7	14
70	Novel thermogelling dispersions of polymer nanoparticles for controlled protein release. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1301-1308.	3.3	14
71	Optimizing Anisotropic Polyurethane Scaffolds to Mechanically Match with Native Myocardium. ACS Biomaterials Science and Engineering, 2020, 6, 2757-2769.	5.2	14
72	Tissue Engineering Bone Using Autologous Progenitor Cells in the Peritoneum. PLoS ONE, 2014, 9, e93514.	2.5	13

#	Article	IF	CITATIONS
73	Effects of nanoporous alumina on inflammatory cell response. Journal of Biomedical Materials Research - Part A, 2014, 102, 3773-3780.	4.0	13
74	A novel nearâ€infrared fluorescent probe for monitoring cyclooxygenaseâ€2 in inflammation and tumor. Journal of Biophotonics, 2018, 11, e201700339.	2.3	13
75	Combined Tumor Environment Triggered Selfâ€Assembling Peptide Nanofibers and Inducible Multivalent Ligand Display for Cancer Cell Targeting with Enhanced Sensitivity and Specificity. Small, 2020, 16, e2002780.	10.0	13
76	Intraocular Pressure Changes: An Important Determinant of the Biocompatibility of Intravitreous Implants. PLoS ONE, 2011, 6, e28720.	2.5	13
77	Thermosensitive hydrogels deliver bioactive protein to the vaginal wall. PLoS ONE, 2017, 12, e0186268.	2.5	13
78	Regional-specific meniscal extracellular matrix hydrogels and their effects on cell–matrix interactions of fibrochondrocytes. Biomedical Materials (Bristol), 2022, 17, 014105.	3.3	13
79	In vivo monitoring of activated macrophages and neutrophils in response to ischemic osteonecrosis in a mouse model. Journal of Orthopaedic Research, 2016, 34, 307-313.	2.3	12
80	Design of a portable imager for near-infrared visualization of cutaneous wounds. Journal of Biomedical Optics, 2017, 22, 016010.	2.6	12
81	A nearâ€infrared fluorescent pH sensing film for wound milieu pH monitoring. Experimental Dermatology, 2020, 29, 107-111.	2.9	12
82	A mathematical model for foreign body reactions in 2D. International Journal of Computer Mathematics, 2011, 88, 610-633.	1.8	9
83	Preparation of a novel injectable in situ-gelling nanoparticle with applications in controlled protein release and cancer cell entrapment. RSC Advances, 2018, 8, 34625-34633.	3.6	9
84	A DUAL-MODALITY OPTICAL BIOPSY APPROACH FOR IN VIVO DETECTION OF PROSTATE CANCER IN RAT MODEL. Journal of Innovative Optical Health Sciences, 2011, 04, 269-277.	1.0	8
85	An optical probe for detecting chondrocyte apoptosis in response to mechanical injury. Scientific Reports, 2017, 7, 10906.	3.3	8
86	A predictive tool for foreign body fibrotic reactions using a two-dimensional computational model. Open Access Bioinformatics, 2011, 2011, 19.	0.9	7
87	Non-invasive Characterization of Immune Responses to Biomedical Implants. Annals of Biomedical Engineering, 2016, 44, 693-704.	2.5	7
88	Click chemistry-based pre-targeting cell delivery for cartilage regeneration. International Journal of Energy Production and Management, 2021, 8, rbab018.	3.7	7
89	Mathematical Modeling of Phagocyte Chemotaxis toward and Adherence to Biomaterial Implants. , 2007, , .		6
90	Hyaluronic Acid-Based Optical Probe for the Diagnosis of Human Osteoarthritic Cartilage. Nanotheranostics, 2018, 2, 347-359.	5 . 2	6

#	Article	IF	Citations
91	A computational model of fibroblast and macrophage spatial/temporal dynamics in foreign body reactions. Journal of Immunological Methods, 2013, 397, 37-46.	1.4	5
92	Novel source of human hematopoietic stem cells from peritoneal dialysis effluents. Stem Cell Research, 2015, 15, 299-304.	0.7	5
93	Computational modeling of phagocyte transmigration for foreign body responses to subcutaneous biomaterial implants in mice. BMC Bioinformatics, 2016, 17, 111.	2.6	5
94	Tracking and Imaging of Transplanted Stem Cells in Animals. Methods in Molecular Biology, 2019, 2150, 45-56.	0.9	5
95	Enhanced Endothelial Cell Delivery for Repairing Injured Endothelium via Pretargeting Approach and Bioorthogonal Chemistry. ACS Biomaterials Science and Engineering, 2020, 6, 6831-6841.	5.2	5
96	An in vitro system to investigate IOL: Lens capsule interaction. Experimental Eye Research, 2021, 203, 108430.	2.6	5
97	Minimal Removal of Iron-Dextran by Conventional Haemodialysis. Clinical Drug Investigation, 1997, 14, 12-15.	2.2	4
98	Computational modeling of phagocyte transmigration during biomaterial-mediated foreign body responses., 2010, 2010, 609-612.		4
99	Development of 3D Lymph Node Mimetic for Studying Prostate Cancer Metastasis. Advanced Biology, 2019, 3, 1900019.	3.0	4
100	Chemokine releasing particle implants for trapping circulating prostate cancer cells. Scientific Reports, 2020, 10, 4433.	3.3	4
101	Molecular Mechanism of Biomaterial-Mediated Phagocyte Responses. , 0, , 3-14.		4
102	Development of a dual-wavelength fluorescent nanoprobe for in vivo and in vitro cell tracking consecutively. Bioorganic and Medicinal Chemistry, 2019, 27, 1855-1862.	3.0	3
103	Biomoleculesâ€releasing click chemistryâ€based bioadhesives for repairing acetabular labrum tears. Journal of Orthopaedic Research, 2022, 40, 2646-2655.	2.3	3
104	Nano-featured highly interconnective macroporous elastic scaffolds for cardiovascular tissue engineering. , $2007, , .$		2
105	Phagocyte Transmigration Modeling Using System Dynamic Controls. , 2007, , .		2
106	A hybrid computational model for phagocyte transmigration. , 2008, 2008, .		2
107	Nonlinear RANSAC Optimization for Parameter Estimation with Applications to Phagocyte Transmigration. , 2011, , .		2
108	Ratiometric Reactive Oxygen Species Nanoprobe for Noninvasive <l>ln Vivo</l> Imaging of Subcutaneous Inflammation/Infection. Journal of Biomedical Nanotechnology, 2016, 12, 1679-1687.	1.1	2

#	Article	IF	Citations
109	The antilymphatic metastatic effect of hyaluronic acid in a mouse model of oral squamous cell carcinoma. Cancer Biology and Therapy, 2020, 21, 541-548.	3.4	2
110	Effect of time and temperature-dependent changes of IOL material properties on IOL: Lens capsule interactions. Experimental Eye Research, 2021, 211, 108726.	2.6	2
111	Design and evaluation of an imager for assessing wound inflammatory responses and bioburden in a pig model. Journal of Biomedical Optics, 2019, 25, 1.	2.6	2
112	Device-Related Infections. , 2020, , 171-188.		2
113	Role of fibronectin and IOL surface modification in IOL: Lens capsule interactions. Experimental Eye Research, 2022, , 109135.	2.6	2
114	Methods Used to Evaluate the Host Responses to Medical Implants In Vivo., 2015,, 425-440.		1
115	A nonâ€contact device for fast screening of wound infections. Experimental Dermatology, 2021, 30, 1332-1339.	2.9	1
116	Nonlinear RANSAC Optimization for Parameter Estimation with Applications to Phagocyte Transmigration., 2011, 1, 501-504.		1