S A Khrapak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4020673/publications.pdf

Version: 2024-02-01

217 papers 8,574 citations

50276 46 h-index 85 g-index

222 all docs 222 docs citations

times ranked

222

1623 citing authors

#	Article	IF	Citations
1	Minima of shear viscosity and thermal conductivity coefficients of classical fluids. Physics of Fluids, 2022, 34, .	4.0	13
2	Spatial distribution of dust density wave properties in fluid complex plasmas. Physical Review E, 2022, 105, 025202.	2.1	7
3	Gas–liquid crossover in the Lennard-Jones system. Journal of Chemical Physics, 2022, 156, 116101.	3.0	10
4	Freezing Temperature and Density Scaling of Transport Coefficients. Journal of Physical Chemistry Letters, 2022, 13, 2674-2678.	4.6	9
5	Freezing density scaling of fluid transport properties: Application to liquefied noble gases. Journal of Chemical Physics, 2022, 157, .	3.0	9
6	To the optical properties of moderately non-ideal plasma. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 290, 108297.	2.3	3
7	Vibrational model of thermal conduction for fluids with soft interactions. Physical Review E, 2021, 103, 013207.	2.1	16
8	Thermal conduction in two-dimensional complex plasma layers. Physics of Plasmas, 2021, 28, 010704.	1.9	8
9	Prandtl Number in Classical Hard-Sphere and One-Component Plasma Fluids. Molecules, 2021, 26, 821.	3.8	4
10	Sound Velocities of Generalized Lennard-Jones (n â^' 6) Fluids Near Freezing. Molecules, 2021, 26, 1660.	3.8	3
11	Transport properties of Lennard-Jones fluids: Freezing density scaling along isotherms. Physical Review E, 2021, 103, 042122.	2.1	15
12	Formation of droplets in weightless complex plasmas. Contributions To Plasma Physics, 2021, 61, e202100081.	1.1	2
13	From soft- to hard-sphere fluids: Crossover evidenced by high-frequency elastic moduli. Physical Review E, 2021, 103, 052117.	2.1	10
14	Thermal conductivity of strongly coupled Yukawa fluids. Physics of Plasmas, 2021, 28, .	1.9	11
15	Entropy of simple fluids with repulsive interactions near freezing. Journal of Chemical Physics, 2021, 155, 134501.	3.0	10
16	Correlations between the Shear Viscosity and Thermal Conductivity Coefficients of Dense Simple Liquids. JETP Letters, 2021, 114, 540-544.	1.4	11
17	Excess entropy and Stokes-Einstein relation in simple fluids. Physical Review E, 2021, 104, 044110.	2.1	25
18	Self-Diffusion in Simple Liquids as a Random Walk Process. Molecules, 2021, 26, 7499.	3.8	13

#	Article	IF	Citations
19	Stokes–Einstein relation in simple fluids revisited. Molecular Physics, 2020, 118, .	1.7	22
20	Dispersion relations of Yukawa fluids at weak and moderate coupling. Physical Review E, 2020, 102, 033207.	2.1	11
21	Sound Velocities of Lennard-Jones Systems Near the Liquid-Solid Phase Transition. Molecules, 2020, 25, 3498.	3.8	14
22	Reduction of the Coulomb logarithm due to electron-neutral collisions. Physical Review E, 2020, 101, 061202.	2.1	4
23	Instantaneous shear modulus of Yukawa fluids across coupling regimes. Physics of Plasmas, 2020, 27, .	1.9	7
24	Two-body entropy of two-dimensional fluids. Results in Physics, 2020, 17, 103020.	4.1	16
25	Slowing of acoustic waves in electrorheological and string-fluid complex plasmas. New Journal of Physics, 2020, 22, 083079.	2.9	28
26	Lindemann melting criterion in two dimensions. Physical Review Research, 2020, 2, .	3.6	30
27	Approximation of the Mobility of Atomic Ions of Noble Gases in Their Parent Gas. High Temperature, 2020, 58, 545-549.	1.0	4
28	Comment on "Shear modulus of two-dimensional Yukawa or dusty-plasma solids obtained from the viscoelasticity in the liquid state― Physical Review E, 2020, 101, 057201.	2.1	1
29	On the conductivity of moderately non-ideal completely ionized plasma. Results in Physics, 2020, 17, 103163.	4.1	7
30	Ion drift instability in a strongly coupled collisional complex plasma. Plasma Physics and Controlled Fusion, 2020, 62, 105006.	2.1	10
31	Particle charge in PK-4 dc discharge from ground-based and microgravity experiments. Physics of Plasmas, 2019, 26, .	1.9	35
32	Unified description of sound velocities in strongly coupled Yukawa systems of different spatial dimensionality. Physics of Plasmas, 2019, 26, .	1.9	15
33	Modified Frost formula for the mobilities of positive ions in their parent gases. AIP Advances, 2019, 9, 095008.	1.3	10
34	Elastic properties of dense hard-sphere fluids. Physical Review E, 2019, 100, 032138.	2.1	14
35	Theory of a cavity around a large floating sphere in complex (dusty) plasma. Physical Review E, 2019, 99, 053210.	2.1	8
36	Excitation of low-frequency dust density waves in flowing complex plasmas. Physics of Plasmas, 2019, 26, 053702.	1.9	17

#	Article	IF	Citations
37	Onset of transverse (shear) waves in strongly-coupled Yukawa fluids. Journal of Chemical Physics, 2019, 150, 104503.	3.0	34
38	Collective excitations in two-dimensional fluid with dipole-like repulsive interactions. Journal of Physics: Conference Series, 2019, 1348, 012097.	0.4	3
39	Complex plasma research on the International Space Station. Plasma Physics and Controlled Fusion, 2019, 61, 014004.	2.1	26
40	Thermodynamics and dynamics of two-dimensional systems with dipolelike repulsive interactions. Physical Review E, 2018, 97, 022616.	2.1	34
41	Self-diffusion in single-component Yukawa fluids. Journal of Physics Communications, 2018, 2, 045013.	1.2	9
42	Note: Melting criterion for soft particle systems in two dimensions. Journal of Chemical Physics, 2018, 148, 146101.	3.0	14
43	Single-crystal and polycrystalline diamond erosion studies in Pilot-PSI. Journal of Nuclear Materials, 2018, 500, 110-118.	2.7	3
44	Single particle dynamics in a radio-frequency produced plasma sheath. AIP Conference Proceedings, 2018, , .	0.4	3
45	High-frequency elastic moduli of two-dimensional Yukawa fluids and solids. Physics of Plasmas, 2018, 25, .	1.9	18
46	Simple Dispersion Relations for Coulomb and Yukawa Fluids. IEEE Transactions on Plasma Science, 2018, 46, 737-742.	1.3	18
47	Influence of a charge-gradient force on dust acoustic waves. Physics of Plasmas, 2018, 25, .	1.9	16
48	Collective modes of two-dimensional classical Coulomb fluids. Journal of Chemical Physics, 2018, 149, 134114.	3.0	22
49	Practical formula for the shear viscosity of Yukawa fluids. AIP Advances, 2018, 8, .	1.3	27
50	Electron collection and thermionic emission from a spherical dust grain in the space-charge limited regime. Physics of Plasmas, 2018, 25, 063701.	1.9	12
51	Fingerprints of different interaction mechanisms on the collective modes in complex (dusty) plasmas. Physics of Plasmas, 2017, 24, .	1.9	17
52	Thermodynamics of two-dimensional Yukawa systems across coupling regimes. Journal of Chemical Physics, 2017, 146, 134702.	3.0	42
53	Gr $ ilde{A}^{1}\!\!/\!\!$ aneisen parameter for strongly coupled Yukawa systems. Physics of Plasmas, 2017, 24, .	1.9	4
54	Momentum transfer cross-section for ion scattering on dust particles. Physics of Plasmas, 2017, 24, .	1.9	12

#	Article	IF	Citations
55	Computational Prediction of Rate Constants for Reactions Involved in Al Clustering. Journal of Physical Chemistry A, 2017, 121, 8333-8340.	2.5	1
56	Collective modes in simple melts: Transition from soft spheres to the hard sphere limit. Scientific Reports, 2017, 7, 7985.	3.3	39
57	An analytical force balance model for dust particles with size up to several Debye lengths. Physics of Plasmas, 2017, 24, 113702.	1.9	3
58	Practical dispersion relations for strongly coupled plasma fluids. AIP Advances, 2017, 7, .	1.3	18
59	Magnetized electron emission from a small spherical dust grain in fusion related plasmas. Physics of Plasmas, 2017, 24, .	1.9	8
60	Internal Energy of the Classical Two―and Threeâ€Dimensional Oneâ€Componentâ€Plasma. Contributions To Plasma Physics, 2016, 56, 270-280.	1.1	28
61	Collective modes in two-dimensional one-component-plasma with logarithmic interaction. Physics of Plasmas, 2016, 23, .	1.9	14
62	Onset of negative dispersion in one-component-plasma revisited. Physics of Plasmas, 2016, 23, .	1.9	15
63	Relations between the longitudinal and transverse sound velocities in strongly coupled Yukawa fluids. Physics of Plasmas, 2016, 23, .	1.9	23
64	Complex Plasma Research under Microgravity Conditions: PKâ€3 Plus Laboratory on the International Space Station. Contributions To Plasma Physics, 2016, 56, 253-262.	1.1	23
65	Freezing and melting equations for the $\langle i \rangle n \langle j \rangle$ -6 Lennard-Jones systems. AIP Advances, 2016, 6, .	1.3	6
66	On the long-waves dispersion in Yukawa systems. Physics of Plasmas, 2016, 23, .	1.9	37
67	Note: Sound velocity of a soft sphere model near the fluid-solid phase transition. Journal of Chemical Physics, 2016, 144, 126101.	3.0	18
68	Thermodynamics of Yukawa systems and sound velocity in dusty plasmas. Plasma Physics and Controlled Fusion, 2016, 58, 014022.	2.1	31
69	On the estimation of sound speed in two-dimensional Yukawa fluids. Physics of Plasmas, 2015, 22, .	1.9	21
70	On the internal energy of the classical two-dimensional one-component-plasma. AIP Advances, 2015, 5, .	1.3	5
71	Practical thermodynamics of Yukawa systems at strong coupling. Journal of Chemical Physics, 2015, 142, 194903.	3.0	46
72	Approximate expression for the electric potential around an absorbing particle in isotropic collisionless plasma. Physics of Plasmas, 2015, 22, 053704.	1.9	16

#	Article	IF	Citations
73	Practical expressions for the internal energy and pressure of Yukawa fluids. Physical Review E, 2015, 91, 023108.	2.1	41
74	On the lower bound of the internal energy of the one-component-plasma. Physics of Plasmas, 2015, 22, 044504.	1.9	5
75	Fluid approach to evaluate sound velocity in Yukawa systems and complex plasmas. Physical Review E, 2015, 91, 033110.	2.1	48
76	Thermodynamics of Yukawa fluids near the one-component-plasma limit. Physics of Plasmas, 2015, 22, .	1.9	21
77	Simple thermodynamics of strongly coupled one-component-plasma in two and three dimensions. Physics of Plasmas, 2014, 21, .	1.9	21
78	Ion sphere model for Yukawa systems (dusty plasmas). Physics of Plasmas, 2014, 21, .	1.9	37
79	Classical scattering in strongly attractive potentials. Physical Review E, 2014, 89, 032145.	2.1	15
80	Energy spectrum of vacancies and nanobubbles in condense matter: Crystal melting. , 2014, , .		0
81	Simple estimation of thermodynamic properties of Yukawa systems. Physical Review E, 2014, 89, 023102.	2.1	44
82	Accurate momentum transfer cross section for the attractive Yukawa potential. Physics of Plasmas, 2014, 21, 044506.	1.9	11
83	Glass-transition properties of Yukawa potentials: From charged point particles to hard spheres. Physical Review E, 2014, 89, 063105.	2.1	21
84	Accurate transport cross sections for the Lennard-Jones potential. European Physical Journal D, 2014, 68, 1.	1.3	14
85	Dust Density Waves in Weak Electric Fields: Effect of the Dust Number Density. IEEE Transactions on Plasma Science, 2013, 41, 2446-2450.	1.3	2
86	Electron and ion thermal forces in complex (dusty) plasmas. Physics of Plasmas, 2013, 20, 013703.	1.9	9
87	Three dimensional complex plasma structures in a combined radio frequency and direct current discharge. Physics of Plasmas, 2013, 20, 043701.	1.9	14
88	Relationship between the ion drag and electric forces in dense dust clouds. Physics of Plasmas, 2013, 20, 043703.	1.9	15
89	Particle flows in a dc discharge in laboratory and microgravity conditions. Physical Review E, 2013, 87, 063109.	2.1	31
90	Effective Coulomb logarithm for one component plasma. Physics of Plasmas, 2013, 20, 054501.	1.9	22

#	Article	IF	Citations
91	Practical expression for an effective ion-neutral collision frequency in flowing plasmas of some noble gases. Journal of Plasma Physics, 2013, 79, 1123-1124.	2.1	20
92	Energy of vacancy formation in the continuum matter model. Low Temperature Physics, 2013, 39, 465-467.	0.6	2
93	Excitation of dust density waves in weak electric fields. Physics of Plasmas, 2012, 19, 023702.	1.9	15
94	Self-diffusion in strongly coupled Yukawa systems (complex plasmas). Physics of Plasmas, 2012, 19, .	1.9	30
95	fcc-bcc-fluid triple point for model pair interactions with variable softness. Europhysics Letters, 2012, 100, 66004.	2.0	8
96	Experimental investigation on lane formation in complex plasmas under microgravity conditions. New Journal of Physics, 2012, 14, 073058.	2.9	26
97	lonization enhanced ion collection by a small floating grain in plasmas. Physics of Plasmas, 2012, 19, 024510.	1.9	20
98	Grain charging in an intermediately collisional plasma. Europhysics Letters, 2012, 97, 35001.	2.0	35
99	Fluid-solid phase transitions in three-dimensional complex plasmas under microgravity conditions. Physical Review E, 2012, 85, 066407.	2.1	62
100	Universal properties of the melting curves for a wide class of interparticle interactions. , $2011, , .$		2
101	Complex Plasmas With Rodlike Particles. IEEE Transactions on Plasma Science, 2011, 39, 2732-2733.	1.3	9
102	Complex plasmaâ€"the plasma state of soft matter. Soft Matter, 2011, 7, 1287-1298.	2.7	86
103	Freezing of Lennard-Jones-type fluids. Journal of Chemical Physics, 2011, 134, 054120.	3.0	13
104	Application of phenomenological freezing and melting indicators to the exp-6 and Gaussian core potentials. Molecular Physics, 2011, 109, 2417-2421.	1.7	10
105	Structural properties of dense hard sphere packings. Physical Review B, 2011, 83, .	3.2	58
106	Interpenetration of two clouds of microparticles in complex plasma under microgravity conditions. AIP Conference Proceedings, 2011 , , .	0.4	1
107	Accurate freezing and melting equations for the Lennard-Jones system. Journal of Chemical Physics, 2011, 134, 094108.	3.0	31
108	Communication: Universality of the melting curves for a wide range of interaction potentials. Journal of Chemical Physics, 2011, 134, 241101.	3.0	28

#	Article	IF	CITATIONS
109	Freezing and Melting of 3D Complex Plasma Structures under Microgravity Conditions Driven by Neutral Gas Pressure Manipulation. Physical Review Letters, 2011, 106, 205001.	7.8	69
110	Publisher's Note: Structural properties of dense hard sphere packings [Phys. Rev. B 83 , 184105 (2011)]. Physical Review B, 2011, 83, .	3.2	3
111	Experimental determination of particle charge in highly collisional plasma. AIP Conference Proceedings, 2011, , .	0.4	3
112	Freezing and melting of 3D complex plasma structures driven by neutral gas pressure manipulation in PK-3 Plus experiment. AlP Conference Proceedings, $2011, \ldots$	0.4	1
113	The charging of dust particles in the range of very high discharge frequencies. AIP Conference Proceedings, 2011, , .	0.4	0
114	Structural properties of dense hard sphere systems near random close packing. AIP Conference Proceedings, 2011 , , .	0.4	1
115	Frequency dependence of microparticle charge in a radio frequency discharge with Margenau electron velocity distribution. Physics of Plasmas, 2011, 18, 014501.	1.9	3
116	Floating potential of a small particle in a plasma: Difference between Maxwellian and Druyvesteyn electron velocity distributions. Physics of Plasmas, 2010, 17, 104502.	1.9	6
117	Ionization instability of ion-acoustic waves. Physics of Plasmas, 2010, 17, .	1.9	8
118	Multiple phase transitions associated with charge cannibalism effect in complex (dusty) plasmas. Europhysics Letters, 2010, 91, 25001.	2.0	17
119	Non-equilibrium phase transitions in complex plasma. Plasma Physics and Controlled Fusion, 2010, 52, 124042.	2.1	9
120	Shielding of a test charge: Role of plasma production and loss balance. Physics of Plasmas, 2010, 17, 042107.	1.9	37
121	Effect of ionization/recombination processes on the electrical interactions between positively charged particles in highly collisional plasmas. Physics of Plasmas, 2010, 17, 034503.	1.9	7
122	A note on the electrical potential distribution around a test charge in anisotropic collisional plasmas. Journal of Plasma Physics, 2010, 76, 603-606.	2.1	1
123	Shielding of a Small Charged Particle in Weakly Ionized Plasmas. IEEE Transactions on Plasma Science, 2010, 38, 818-825.	1.3	33
124	Effect of polarization force on the propagation of dust acoustic solitary waves. New Journal of Physics, 2010, 12, 073002.	2.9	66
125	Liquid-solid phase transition in the Lennard-Jones system. Physical Review B, 2010, 82, .	3.2	25
126	Kinetics of Fluid Demixing in Complex Plasmas: Role of Two-Scale Interactions. Physical Review Letters, 2010, 105, 045001.	7.8	49

#	Article	IF	Citations
127	10.1007/s11447-008-1014-3., 2010, 106, 166.		o
128	Improved theoretical approximation for the ion drag force in collisionless plasma with strong ion-grain coupling. Physics of Plasmas, 2009, 16, 044507.	1.9	10
129	Properties of ion-particle interaction and the ion drag force in complex (dusty) plasmas. , 2009, , .		1
130	Basic Processes in Complex (Dusty) Plasmas: Charging, Interactions, and Ion Drag Force. Contributions To Plasma Physics, 2009, 49, 148-168.	1.1	144
131	Influence of a Polarization Force on Dust Acoustic Waves. Physical Review Letters, 2009, 102, 245004.	7.8	138
132	Predicting Freezing for Some Repulsive Potentials. Physical Review Letters, 2009, 103, 255003.	7.8	32
133	Ion Drag Force in Collisional Plasmas. IEEE Transactions on Plasma Science, 2009, 37, 487-493.	1.3	6
134	Critical point and sound waves in complex plasmas. Physics of Plasmas, 2009, 16, 073706.	1.9	2
135	Effect of electron emission on the charge and shielding of a dust grain in a plasma: A continuum theory. Journal of Experimental and Theoretical Physics, 2008, 106, 166-171.	0.9	10
136	Electric Potential Around an Absorbing Body in Plasmas: Effect of Ion-Neutral Collisions. Physical Review Letters, 2008, 100, 225003.	7.8	102
137	Superfluidlike Motion of an Absorbing Body in a Collisional Plasma. Physical Review Letters, 2008, 100, 055002.	7.8	29
138	A note on the binary interaction potential in complex (dusty) plasmas. Physics of Plasmas, 2008, 15, 084502.	1.9	18
139	Ion drag force in collisional plasmas. , 2008, , .		0
140	Complex plasma laboratory PK-3 Plus on the International Space Station. New Journal of Physics, 2008, 10, 033036.	2.9	155
141	Collisional Effects in Complex (Dusty) Plasmas. AIP Conference Proceedings, 2008, , .	0.4	0
142	lon drag force on an absorbing grain in highly collisional plasma in the presence of plasma production and loss processes. AIP Conference Proceedings, 2008, , .	0.4	1
143	New Directions of Research in Complex Plasmas on the International Space Station. AIP Conference Proceedings, 2008, , .	0.4	O
144	A Model for Grain Charging in Weakly Ionized Plasmas. AIP Conference Proceedings, 2008, , .	0.4	1

#	Article	IF	CITATIONS
145	Superfluid-like Motion of a Small Absorbing Body in a Collisional Plasma. AIP Conference Proceedings, 2008, , .	0.4	O
146	Ion drag force on a small grain in highly collisional weakly anisotropic plasma: Effect of plasma production and loss mechanisms. Physics of Plasmas, 2008, 15, 053703.	1.9	23
147	An interpolation formula for the ion flux to a small particle in collisional plasmas. Physics of Plasmas, 2008, 15 , .	1.9	55
148	Response to "Comment on †lon collection by a sphere in a flowing collisional plasma†M―[Phys. Plasmas 14, 074701 (2007)]. Physics of Plasmas, 2007, 14, .	1.9	7
149	Ion collection by a sphere in a flowing highly collisional plasma. Physics of Plasmas, 2007, 14, 034502.	1.9	9
150	Model of grain charging in collisional plasmas accounting for collisionless layer. Physics of Plasmas, 2007, 14, 042102.	1.9	63
151	Electrostatic potential behind a macroparticle in a drifting collisional plasma: Effect of plasma absorption. Physics of Plasmas, 2007, 14, 022102.	1.9	25
152	Measurement of the ion drag force in a collisionless plasma with strong ion-grain coupling. Physics of Plasmas, 2007, 14, .	1.9	29
153	Attraction of Positively Charged Particles in Highly Collisional Plasmas. Physical Review Letters, 2007, 99, 055003.	7.8	46
154	PK-4: Complex Plasmas in Space—The Next Generation. IEEE Transactions on Plasma Science, 2007, 35, 255-259.	1.3	33
155	Void Closure in Complex Plasmas under Microgravity Conditions. Physical Review Letters, 2007, 98, 265006.	7.8	69
156	Effective charge of a small absorbing body in highly collisional plasma subject to an external electric field. Physics of Plasmas, 2007, 14, 054503.	1.9	12
157	Drag force on an absorbing body in highly collisional plasmas. Journal of Applied Physics, 2007, 101, 033307.	2.5	43
158	Critical Point in Complex Plasmas. Physical Review Letters, 2006, 96, 015001.	7.8	54
159	Charging properties of a dust grain in collisional plasmas. Physics of Plasmas, 2006, 13, 052114.	1.9	7 5
160	Superdiffusion and Viscoelastic Vortex Flows in a Two-Dimensional Complex Plasma. Physical Review Letters, 2006, 96, 105010.	7.8	88
161	Electrostatic interaction between dust particles in weakly ionized complex plasmas. Physics of Plasmas, 2006, 13, 104508.	1.9	39
162	Grain surface temperature in noble gas discharges: Refined analytical model. Physics of Plasmas, 2006, 13, 104506.	1.9	48

#	Article	IF	Citations
163	Complex (dusty) plasmas: Current status, open issues, perspectives. Physics Reports, 2005, 421, 1-103.	25.6	1,013
164	Measurements of the Dust-Ion Momentum Transfer Frequency and Ion Drag Force in Complex Plasmas. Contributions To Plasma Physics, 2005, 45, 223-228.	1.1	8
165	Transport of microparticles in weakly ionized gas-discharge plasmas under microgravity. Microgravity Science and Technology, 2005, 16, 311-316.	1.4	3
166	Grain Charge in the Bulk of Gas Discharges. AIP Conference Proceedings, 2005, , .	0.4	1
167	Experimental Determination of the Ion Drag Force in a Complex Plasma. AIP Conference Proceedings, 2005, , .	0.4	0
168	Momentum Transfer in Complex Plasmas: Results of Binary Collision Approach. AIP Conference Proceedings, 2005, , .	0.4	0
169	Role of effective potential barriers in the nonlinear screening regime: Grain charging and ion drag force. Physics of Plasmas, 2005, 12, 092106.	1.9	14
170	Force field inside the void in complex plasmas under microgravity conditions. Physical Review E, 2005, 71, 056401.	2.1	78
171	Nonlinear drag force in dusty plasmas. Physics of Plasmas, 2005, 12, 112311.	1.9	26
172	Particle charge in the bulk of gas discharges. Physical Review E, 2005, 72, 016406.	2.1	287
173	Hybrid approach to the ion drag force. Physics of Plasmas, 2005, 12, 042308.	1.9	110
174	Kinetic approach for the ion drag force in a collisional plasma. Physical Review E, 2005, 71, 016405.	2.1	78
175	Statistics of particle transport in a two-dimensional dusty plasma cluster. Physics of Plasmas, 2005, 12, 022302.	1.9	17
176	Determination of the ion-drag force in a complex plasma. Physics of Plasmas, 2005, 12, 093503.	1.9	37
177	Dynamics and structural properties of dusty plasma liquid in microgravity: experiments onboard the International Space Station. Plasma Physics and Controlled Fusion, 2004, 46, B359-B366.	2.1	7
178	Ten Years of Plasma Crystals - from ICPIG (Bochum) to ICPIG (Greifswald). Contributions To Plasma Physics, 2004, 44, 450-457.	1.1	32
179	Dust Mode in Collisionally Dominated Complex Plasmas With Particle Drift. IEEE Transactions on Plasma Science, 2004, 32, 613-616.	1.3	25
180	Momentum transfer in complex plasmas. Physical Review E, 2004, 70, 056405.	2.1	99

#	Article	IF	CITATIONS
181	Dusty plasmas in a constant electric field: Role of the electron drag force. Physical Review E, 2004, 69, 066411.	2.1	55
182	Electrostatic modes in collisional complex plasmas under microgravity conditions. Physical Review E, 2004, 69, 066401.	2.1	55
183	Scattering in the Attractive Yukawa Potential: Application to the Ion-Drag Force in Complex Plasmas. IEEE Transactions on Plasma Science, 2004, 32, 555-560.	1.3	59
184	Ion drag force in dusty plasmas. Plasma Physics and Controlled Fusion, 2004, 46, B267-B279.	2.1	36
185	Experimental Determination of Dust-Particle Charge in a Discharge Plasma at Elevated Pressures. Physical Review Letters, 2004, 93, 085001.	7.8	170
186	Dusty plasmas. Physics-Uspekhi, 2004, 47, 447-492.	2.2	585
187	Force on a Charged Test Particle in a Collisional Flowing Plasma. Physical Review Letters, 2004, 92, 205007.	7.8	89
188	From Fluid Flows to Crystallization: New Results from Complex Plasmas. Physica Scripta, 2004, T107, 59.	2.5	29
189	Dynamics of macroparticles in a dusty plasma under microgravity conditions (First experiments on) Tj ETQq1 1 ().784314 r	gBT_/Overloc
190	Compressional waves in complex (dusty) plasmas under microgravity conditions. Physics of Plasmas, 2003, 10 , 1 -4.	1.9	90
191	Scattering in the Attractive Yukawa Potential in the Limit of Strong Interaction. Physical Review Letters, 2003, 90, 225002.	7.8	173
192	Transport of Microparticles in Weakly Ionized Gas-Discharge Plasmas under Microgravity Conditions. Physical Review Letters, 2003, 90, 245005.	7.8	69
193	Rodlike particles in gas discharge plasmas: Theoretical model. Physical Review E, 2003, 68, 026403.	2.1	40
194	Low-frequency waves in collisional complex plasmas with an ion drift. Physics of Plasmas, 2003, 10, 4616-4621.	1.9	29
195	Weakly dissipative dust-ion-acoustic solitons. Physical Review E, 2003, 67, 056402.	2.1	139
196	Comment on "Measurement of the ion drag force on falling dust particles and its relation to the void formation in complex (dusty) plasmas―[Phys. Plasmas 10, 1278 (2003)]. Physics of Plasmas, 2003, 10, 4579-4581.	1.9	38
197	Complex-plasma boundaries. Physical Review E, 2002, 66, 056411.	2.1	42
198	Ion drag in complex plasmas. AIP Conference Proceedings, 2002, , .	0.4	4

#	Article	IF	CITATIONS
199	Dust diffusion across a magnetic field due to random charge fluctuations. Physics of Plasmas, 2002, 9, 619-623.	1.9	12
200	Ion drag force in complex plasmas. Physical Review E, 2002, 66, 046414.	2.1	293
201	Universal scaling in complex (dusty) plasmas. Physical Review E, 2002, 66, 016404.	2.1	123
202	Interaction potential of microparticles in a plasma: Role of collisions with plasma particles. Physical Review E, 2001, 64, 046403.	2.1	60
203	Simulation of the dynamics of strongly interacting macroparticles in a weakly ionized plasma. Journal of Experimental and Theoretical Physics, 2001, 92, 228-234.	0.9	25
204	Waves in two component electron-dust plasma. Physics of Plasmas, 2001, 8, 2629-2634.	1.9	46
205	Scaling law for the fluid-solid phase transition in Yukawa systems (dusty plasmas). Journal of Experimental and Theoretical Physics, 2000, 90, 287-289.	0.9	110
206	Effect of Stochastic Grain Charge Fluctuation on the Kinetic Energy of the Particles in Dusty Plasma. Physica Scripta, 2000, T84, 229.	2.5	20
207	Mechanism of dust-acoustic instability in a direct current glow discharge plasma. Physics of Plasmas, 2000, 7, 1374-1380.	1.9	138
208	Dynamics of formation of ordered structures in a thermal plasma with macroparticles. Journal of Experimental and Theoretical Physics, 1999, 88, 460-464.	0.9	7
209	Role of stochastic fluctuations in the charge on macroscopic particles in dusty plasmas. Journal of Experimental and Theoretical Physics, 1999, 88, 1130-1136.	0.9	27
210	Dynamical properties of random charge fluctuations in a dusty plasma with different charging mechanisms. Physical Review E, 1999, 59, 6017-6022.	2.1	89
211	Charge-fluctuation-induced heating of dust particles in a plasma. Physical Review E, 1999, 60, 5959-5964.	2.1	123
212	Dynamics of the ordered structure formation in a thermal dusty plasma. Physical Review E, 1998, 57, 7086-7092.	2.1	30
213	Anomalously high kinetic energy of charged macroparticles in a plasma. Journal of Experimental and Theoretical Physics, 1997, 85, 272-275.	0.9	3
214	Ordered structures in a nonideal dusty glow-discharge plasma. Journal of Experimental and Theoretical Physics, 1997, 85, 1110-1118.	0.9	76
215	The "trampoline effect" and the distribution of forces inside the void region in complex plasmas under microgravity conditions. , 0 , , .		0
216	Experimental determination of dust particle charge at elevated pressures. , 0, , .		2