Tomas Cajthaml

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4020401/publications.pdf

Version: 2024-02-01

219 papers

10,353 citations

54 h-index 91 g-index

223 all docs

223
docs citations

times ranked

223

11357 citing authors

#	Article	IF	CITATIONS
1	Occurrence of microplastics in raw and treated drinking water. Science of the Total Environment, 2018, 643, 1644-1651.	8.0	669
2	Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME Journal, 2016, 10, 346-362.	9.8	307
3	Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytologist, 2014, 201, 269-278.	7.3	300
4	Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biology and Biochemistry, 2008, 40, 2068-2075.	8.8	264
5	Microplastics in drinking water treatment – Current knowledge and research needs. Science of the Total Environment, 2019, 667, 730-740.	8.0	263
6	Ligninolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biology and Biochemistry, 2004, 36, 1545-1551.	8.8	245
7	Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biology and Biochemistry, 2013, 56, 60-68.	8.8	226
8	Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition. FEMS Microbiology Ecology, 2011, 75, 291-303.	2.7	198
9	Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. Chemosphere, 2009, 75, 745-750.	8.2	165
10	Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites. Forest Ecology and Management, 2013, 309, 87-95.	3.2	161
11	Production of lignocellulose-degrading enzymes and degradation of leaf litter by saprotrophic basidiomycetes isolated from a Quercus petraea forest. Soil Biology and Biochemistry, 2007, 39, 2651-2660.	8.8	155
12	Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere, 2006, 64, 408-414.	8.2	154
13	Estimation of fungal biomass in forest litter and soil. Fungal Ecology, 2013, 6, 1-11.	1.6	142
14	Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Research in Microbiology, 2006, 157, 248-253.	2.1	134
15	Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi. Biodegradation, 1999, 10, 159-168.	3.0	129
16	Bioremediation of PAH-contaminated soil with fungi – From laboratory to field scale. International Biodeterioration and Biodegradation, 2014, 86, 238-247.	3.9	128
17	Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining. Soil Biology and Biochemistry, 2008, 40, 2107-2115.	8.8	126
18	When the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback. ISME Journal, 2014, 8, 1920-1931.	9.8	125

#	Article	IF	Citations
19	Irpex lacteus , a white rot fungus applicable to water and soil bioremediation. Applied Microbiology and Biotechnology, 2000, 54, 850-853.	3.6	119
20	Distribution of microbial biomass and activity of extracellular enzymes in a hardwood forest soil reflect soil moisture content. Applied Soil Ecology, 2010, 46, 177-182.	4.3	119
21	Bioremediation of long-term PCB-contaminated soil by white-rot fungi. Journal of Hazardous Materials, 2017, 324, 701-710.	12.4	118
22	Preparation of titania mesoporous materials using a surfactant-mediated sol–gel method. Journal of Materials Chemistry, 2001, 11, 644-651.	6.7	116
23	Nanoscale zero-valent iron application for in situ reduction of hexavalent chromium and its effects on indigenous microorganism populations. Science of the Total Environment, 2014, 485-486, 739-747.	8.0	116
24	Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling. ISME Journal, 2018, 12, 1768-1778.	9.8	116
25	Ecotoxicity and biodegradability of new brominated flame retardants: A review. Ecotoxicology and Environmental Safety, 2014, 110, 153-167.	6.0	112
26	Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products. Chemosphere, 2012, 88, 1317-1323.	8.2	108
27	Bioaccumulation of silver in ectomycorrhizal and saprobic macrofungi from pristine and polluted areas. Science of the Total Environment, 2010, 408, 2733-2744.	8.0	102
28	Dominant trees affect microbial community composition and activity in post-mining afforested soils. Soil Biology and Biochemistry, 2013, 56, 105-115.	8.8	101
29	Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae. Journal of Applied Phycology, 2015, 27, 1443-1451.	2.8	101
30	Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils. FEMS Microbiology Ecology, 2016, 92, fiw008.	2.7	97
31	Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi – Metabolites, enzymes and residual antibacterial activity. Chemosphere, 2015, 136, 311-320.	8.2	96
32	Activity and spatial distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes. Enzyme and Microbial Technology, 2008, 43, 186-192.	3.2	92
33	Differential degradation of oak (Quercus petraea) leaf litter by litter-decomposing basidiomycetes. Research in Microbiology, 2007, 158, 447-455.	2.1	90
34	Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection. Journal of Chromatography A, 2002, 974, 213-222.	3.7	88
35	Microbial transformation of synthetic estrogen $17\hat{l}_{\pm}$ -ethinylestradiol. Environmental Pollution, 2009, 157, 3325-3335.	7.5	88
36	Irpex lacteus, a white-rot fungus with biotechnological potential â€" review. Folia Microbiologica, 2009, 54, 375-390.	2.3	85

#	Article	IF	CITATIONS
37	Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents. Science of the Total Environment, 2016, 563-564, 822-834.	8.0	83
38	Stabilization of soil organic matter by earthworms is connected with physical protection rather than with chemical changes of organic matter. Geoderma, 2017, 289, 29-35.	5.1	81
39	The effects of tree species and substrate on carbon sequestration and chemical and biological properties in reforested post-mining soils. Geoderma, 2017, 292, 9-16.	5.1	80
40	Compost-Mediated Removal of Polycyclic Aromatic Hydrocarbons from Contaminated Soil. Archives of Environmental Contamination and Toxicology, 2003, 44, 336-342.	4.1	79
41	Influence of soil organic matter decomposition on arbuscular mycorrhizal fungi in terms of asymbiotic hyphal growth and root colonization. Mycorrhiza, 2009, 19, 255-266.	2.8	79
42	Small-scale distribution of extracellular enzymes, fungal, and bacterial biomass in Quercus petraea forest topsoil. Biology and Fertility of Soils, 2010, 46, 717-726.	4.3	77
43	Polycyclic aromatic hydrocarbons degradation and microbial community shifts during co-composting of creosote-treated wood. Journal of Hazardous Materials, 2016, 301, 17-26.	12.4	76
44	Altitudinal, seasonal and interannual shifts in microbial communities and chemical composition of soil organic matter in Alpine forest soils. Soil Biology and Biochemistry, 2017, 112, 1-13.	8.8	76
45	Biodegradation of endocrineâ€disrupting compounds by ligninolytic fungi: mechanisms involved in the degradation. Environmental Microbiology, 2015, 17, 4822-4834.	3.8	75
46	Degradation of PAHs by ligninolytic enzymes of Irpex lacteus. Folia Microbiologica, 2008, 53, 289-294.	2.3	71
47	Chemical and microbiological characterization of an aged PCB-contaminated soil. Science of the Total Environment, 2015, 533, 177-186.	8.0	67
48	Terracidiphilus gabretensis gen. nov., sp. nov., an Abundant and Active Forest Soil Acidobacterium Important in Organic Matter Transformation. Applied and Environmental Microbiology, 2016, 82, 560-569.	3.1	67
49	Bioavailability modification and fungal biodegradation of PAHs in aged industrial soils. International Biodeterioration and Biodegradation, 2007, 60, 165-170.	3.9	65
50	Mycoremediation of PAH-contaminated soil. Folia Microbiologica, 2002, 47, 255-258.	2.3	64
51	Breakdown products on metabolic pathway of degradation of benz[a]anthracene by a ligninolytic fungus. Chemosphere, 2006, 64, 560-564.	8.2	64
52	Biodegradation of endocrine disruptors in urban wastewater using Pleurotus ostreatus bioreactor. New Biotechnology, 2018, 43, 53-61.	4.4	61
53	Screening for 32 per- and polyfluoroalkyl substances (PFAS) including GenX in sludges from 43 WWTPs located in the Czech Republic - Evaluation of potential accumulation in vegetables after application of biosolids. Chemosphere, 2020, 261, 128018.	8.2	57
54	In vivo and in vitro polycyclic aromatic hydrocarbons degradation by Lentinus (Panus) tigrinus CBS 577.79. Bioresource Technology, 2010, 101, 3004-3012.	9.6	56

#	Article	IF	Citations
55	Humus accumulation, humification, and humic acid composition in soils of two post-mining chronosequences after coal mining. Journal of Soils and Sediments, 2013, 13, 491-500.	3.0	56
56	Combined abiotic and biotic in-situ reduction of hexavalent chromium in groundwater using nZVI and whey: A remedial pilot test. Journal of Hazardous Materials, 2015, 300, 670-679.	12.4	55
57	Effect of digestate and fly ash applications on soil functional properties and microbial communities. European Journal of Soil Biology, 2015, 71, 1-12.	3.2	55
58	Short-term impact of dry olive mill residue addition to soil on the resident microbiota. Bioresource Technology, 2009, 100, 6098-6106.	9.6	54
59	Hormonal activities of new brominated flame retardants. Chemosphere, 2012, 87, 820-824.	8.2	53
60	Influence of the bioaccessible fraction of polycyclic aromatic hydrocarbons on the ecotoxicity of historically contaminated soils. Journal of Hazardous Materials, 2013, 254-255, 116-124.	12.4	53
61	Effects of soil substrate quality, microbial diversity and community composition on the plant community during primary succession. Soil Biology and Biochemistry, 2016, 99, 75-84.	8.8	53
62	Changes in soil microbial community functionality and structure in a metal-polluted site: The effect of digestate and fly ash applications. Journal of Environmental Management, 2015, 162, 63-73.	7.8	52
63	Pharmaceuticals, benzene, toluene and chlorobenzene removal from contaminated groundwater by combined UV/H 2 O 2 photo-oxidation and aeration. Water Research, 2017, 120, 245-255.	11.3	49
64	Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid. Folia Microbiologica, 2010, 55, 265-269.	2.3	48
65	An efficient PAH-degrading Lentinus (Panus) tigrinus strain: Effect of inoculum formulation and pollutant bioavailability in solid matrices. Journal of Hazardous Materials, 2010, 183, 669-676.	12.4	47
66	Soil biota in post-mining sites along a climatic gradient in the USA: Simple communities in shortgrass prairie recover faster than complex communities in tallgrass prairie and forest. Soil Biology and Biochemistry, 2013, 67, 212-225.	8.8	46
67	Soil Food Web Changes during Spontaneous Succession at Post Mining Sites: A Possible Ecosystem Engineering Effect on Food Web Organization?. PLoS ONE, 2013, 8, e79694.	2.5	46
68	Assessment of degradation potential of aliphatic hydrocarbons by autochthonous filamentous fungi from a historically polluted clay soil. Science of the Total Environment, 2015, 505, 545-554.	8.0	44
69	Hydrocarbon deposition and soil microflora as affected by highway traffic. Environmental Pollution, 2001, 113, 255-262.	7.5	42
70	Estrogenic and androgenic activity of PCBs, their chlorinated metabolites and other endocrine disruptors estimated with two in vitro yeast assays. Science of the Total Environment, 2009, 407, 5921-5925.	8.0	41
71	Widely used pharmaceuticals present in the environment revealed as inÂvitro antagonists for human estrogen and androgen receptors. Chemosphere, 2016, 152, 284-291.	8.2	39
72	Recovery of fen peatland microbiomes and predicted functional profiles after rewetting. ISME Journal, 2020, 14, 1701-1712.	9.8	39

#	Article	IF	Citations
73	Effect of pyrolysis temperature on removal of organic pollutants present in anaerobically stabilized sewage sludge. Chemosphere, 2021, 265, 129082.	8.2	39
74	Organic matter transformation and detoxification in dry olive mill residue by the saprophytic fungus Paecilomyces farinosus. Process Biochemistry, 2009, 44, 216-225.	3.7	37
75	Biotransformation of the Antibiotic Agent Flumequine by Ligninolytic Fungi and Residual Antibacterial Activity of the Transformation Mixtures. Environmental Science & Environ	10.0	37
76	Inoculum carrier and contaminant bioavailability affect fungal degradation performances of PAH-contaminated solid matrices from a wood preservation plant. Chemosphere, 2010, 79, 855-864.	8.2	36
77	Mechanistic Study of 17α-Ethinylestradiol Biodegradation by <i>Pleurotus ostreatus </i> Extracelullar and Intracelullar Degradation Mechanisms. Environmental Science & Echnology, 2012, 46, 13377-13385.	10.0	36
78	Real-time PCR quantification of arbuscular mycorrhizal fungi: does the use of nuclear or mitochondrial markers make a difference?. Mycorrhiza, 2017, 27, 577-585.	2.8	36
79	Complete genome sequence of Pseudomonas alcaliphila JAB1 (=DSM 26533), a versatile degrader of organic pollutants. Standards in Genomic Sciences, 2018, 13, 3.	1.5	36
80	Structure selectivity in degradation and translocation of polychlorinated biphenyls (Delor 103) with a Pleurotus ostreatus (oyster mushroom) culture. Chemosphere, 2005, 61, 1370-1378.	8.2	35
81	The effect of lignin photodegradation on decomposability of Calamagrostis epigeios grass litter. Biodegradation, 2011, 22, 1247-1254.	3.0	35
82	Microbiology Meets Archaeology: Soil Microbial Communities Reveal Different Human Activities at Archaic Monte lato (Sixth Century BC). Microbial Ecology, 2017, 73, 925-938.	2.8	35
83	Bioremediation of PAH-contaminated soil by composting: A case study. Folia Microbiologica, 2002, 47, 696-700.	2.3	34
84	Chemical composition of litter affects the growth and enzyme production by the saprotrophic basidiomycete Hypholoma fasciculare. Fungal Ecology, 2011, 4, 417-426.	1.6	34
85	Biodegradation of chlorobenzoic acids by ligninolytic fungi. Journal of Hazardous Materials, 2011, 196, 386-394.	12.4	34
86	Long-term impact of Heracleum mantegazzianum invasion on soil chemical and biological characteristics. Soil Biology and Biochemistry, 2014, 68, 270-278.	8.8	34
87	Molecular structure effects in photodegradation of phenol and its chlorinated derivatives with phthalocyanines. Applied Catalysis B: Environmental, 2008, 80, 321-326.	20.2	33
88	Characterization of soil bacterial, archaeal and fungal communities inhabiting archaeological human-impacted layers at Monte lato settlement (Sicily, Italy). Scientific Reports, 2018, 8, 1903.	3.3	33
89	Major mechanisms contributing to the macrofauna-mediated slow down of litter decomposition. Soil Biology and Biochemistry, 2015, 91, 23-31.	8.8	32
90	Silvibacterium bohemicum gen. nov. sp. nov., an acidobacterium isolated from coniferous soil in the Bohemian Forest National Park. Systematic and Applied Microbiology, 2016, 39, 14-19.	2.8	31

#	Article	IF	Citations
91	Novel PCB-degrading Rhodococcus strains able to promote plant growth for assisted rhizoremediation of historically polluted soils. PLoS ONE, 2019, 14, e0221253.	2.5	31
92	Investigating the coagulation of non-proteinaceous algal organic matter: Optimizing coagulation performance and identification of removal mechanisms. Journal of Environmental Sciences, 2019, 79, 25-34.	6.1	31
93	PAH desorption from river floodplain soils using supercritical fluid extraction. Environmental Pollution, 2008, 156, 745-752.	7.5	30
94	New in vitro reporter gene bioassays for screening of hormonal active compounds in the environment. Applied Microbiology and Biotechnology, 2010, 88, 839-847.	3.6	30
95	Application of Supercritical Fluid Extraction (SFE) to Predict Bioremediation Efficacy of Long-Term Composting of PAH-Contaminated Soil. Environmental Science & Environmental Science & 2005, 39, 8448-8452.	10.0	29
96	The effect of traditional slashâ€andâ€burn agriculture on soil organic matter, nutrient content, and microbiota in tropical ecosystems of Papua New Guinea. Land Degradation and Development, 2019, 30, 166-177.	3.9	29
97	Partial photocatalytic oxidation of cyclopentene over titanium(IV) oxide. Journal of Molecular Catalysis A, 2005, 242, 62-67.	4.8	28
98	Super/subcritical fluid extractions for preparation of the crystalline titania. Journal of Supercritical Fluids, 2010, 52, 215-221.	3.2	28
99	Identification of regioisomers and enantiomers of triacylglycerols in different yeasts using reversed― and chiralâ€phase <scp>LC </scp> – <scp>MS </scp> . Journal of Separation Science, 2013, 36, 3310-3320.	2.5	28
100	Biodegradation of PCBs in contaminated water using spent oyster mushroom substrate and a trickle-bed bioreactor. Water Research, 2020, 170, 115274.	11.3	28
101	Polycyclic aromatic hydrocarbon accumulation in aged and unaged polyurethane microplastics in contaminated soil. Science of the Total Environment, 2021, 770, 145254.	8.0	28
102	Non thermal preparation of photoactive titanium (IV) oxide thin layers. Thin Solid Films, 2006, 495, 18-23.	1.8	27
103	Intraspecific variability in allelopathy of Heracleum mantegazzianum is linked to the metabolic profile of root exudates. Annals of Botany, 2015, 115, 821-831.	2.9	26
104	Bioaugmentation of PAH-contaminated soils: A novel procedure for introduction of bacterial degraders into contaminated soil. Ecological Engineering, 2018, 118, 93-96.	3.6	26
105	Nano zero-valent iron aging interacts with the soil microbial community: a microcosm study. Environmental Science: Nano, 2019, 6, 1189-1206.	4.3	26
106	Litter decomposition along a primary post-mining chronosequence. Biology and Fertility of Soils, 2014, 50, 827-837.	4.3	25
107	Assessment of biodegradation potential at a site contaminated by a mixture of BTEX, chlorinated pollutants and pharmaceuticals using passive sampling methods – Case study. Science of the Total Environment, 2017, 607-608, 1451-1465.	8.0	25
108	Environmental fate of sulfidated nZVI particles: the interplay of nanoparticle corrosion and toxicity during aging. Environmental Science: Nano, 2020, 7, 1794-1806.	4.3	25

#	Article	IF	Citations
109	Coagulation of polyvinyl chloride microplastics by ferric and aluminium sulphate: Optimisation of reaction conditions and removal mechanisms. Journal of Environmental Chemical Engineering, 2021, 9, 106465.	6.7	25
110	Changes in soil microbial communities as affected by intensive cattle husbandry. Applied Soil Ecology, 2012, 58, 56-65.	4.3	24
111	Comparative assessment of fungal augmentation treatments of a fine-textured and historically oil-contaminated soil. Science of the Total Environment, 2016, 566-567, 250-259.	8.0	24
112	Tree species identity alters decomposition of understory litter and associated microbial communities: a case study. Biology and Fertility of Soils, 2019, 55, 525-538.	4.3	24
113	Degradation of BTEX and PAHs by Co(II) and Cu(II)-based radical-generating systems. Applied Catalysis B: Environmental, 2004, 51, 159-164.	20.2	23
114	Deep, subsurface microflora after excavation respiration and biomass and its potential role in degradation of fossil organic matter. Folia Microbiologica, 2011, 56, 389-396.	2.3	23
115	TiO2 powders synthesized by pressurized fluid extraction and supercritical drying: Effect of water and methanol on structural properties and purity. Materials Research Bulletin, 2012, 47, 3573-3579.	5.2	23
116	Ecotoxicity and environmental safety related to nano-scale zerovalent iron remediation applications. Applied Microbiology and Biotechnology, 2016, 100, 9809-9819.	3.6	23
117	Novel assay for the toxicity evaluation of nanoscale zero-valent iron and derived nanomaterials based on lipid peroxidation in bacterial species. Chemosphere, 2018, 213, 568-577.	8.2	23
118	Laccase and horseradish peroxidase for green treatment of phenolic micropollutants in real drinking water and wastewater. Environmental Science and Pollution Research, 2021, 28, 31566-31574.	5. 3	23
119	Discovering the potential of an nZVI-biochar composite as a material for the nanobioremediation of chlorinated solvents in groundwater: Degradation efficiency and effect on resident microorganisms. Chemosphere, 2021, 281, 130915.	8.2	23
120	Source Impact Determination using Airborne and Ground Measurements of Industrial Plumes. Environmental Science & Environmental	10.0	22
121	Method for analysis of psychopharmaceuticals in real industrial wastewater and groundwater with suspended organic particulate matter using solid phase extraction disks extraction and ultra-high performance liquid chromatography/time-of-flight mass spectrometry. Journal of Chromatography A, 2016. 1440. 15-22.	3.7	22
122	Retention of dead standing plant biomass (marcescence) increases subsequent litter decomposition in the soil organic layer. Plant and Soil, 2017, 418, 571-579.	3.7	22
123	Oxidative stress in microbes after exposure to iron nanoparticles: analysis of aldehydes as oxidative damage products of lipids and proteins. Environmental Science and Pollution Research, 2019, 26, 33670-33682.	5.3	22
124	Long-term decomposition of litter in the montane forest and the definition of fungal traits in the successional space. Fungal Ecology, 2020, 46, 100913.	1.6	22
125	Use of fungal technology in soil remediation: A Case Study. Water, Air and Soil Pollution, 2003, 3, 5-14.	0.8	21
126	Does the addition of leaf litter affect soil respiration in the same way as addition of macrofauna excrements (of Bibio marci Diptera larvae) produced from the same litter?. Applied Soil Ecology, 2013, 72, 7-13.	4.3	21

#	Article	IF	Citations
127	Novel full logistic model for estimation of the estrogenic activity of chemical mixtures. Toxicology, 2016, 359-360, 58-70.	4.2	21
128	Adaptive traits of bark and ambrosia beetle-associated fungi. Fungal Ecology, 2019, 41, 165-176.	1.6	21
129	Immobilized Inocula of White-Rot Fungi Accelerate both Detoxification and Organic Matter Transformation in Two-Phase Dry Olive-Mill Residue. Journal of Agricultural and Food Chemistry, 2009, 57, 5452-5460.	5.2	20
130	Functional adaptation of microbial communities from jet fuel-contaminated soil under bioremediation treatment: simulation of pollutant rebound. FEMS Microbiology Ecology, 2011, 78, 137-149.	2.7	20
131	Lentinus (Panus) tigrinus augmentation of a historically contaminated soil: Matrix decontamination and structure and function of the resident bacterial community. Journal of Hazardous Materials, 2011, 186, 1263-1270.	12.4	20
132	Laccase activity profiling and gene expression in PCB-degrading cultures of Trametes versicolor. International Biodeterioration and Biodegradation, 2012, 71, 22-28.	3.9	20
133	Analysis of the biodegradative and adaptive potential of the novel polychlorinated biphenyl degrader Rhodococcus sp. WAY2 revealed by its complete genome sequence. Microbial Genomics, 2020, 6, .	2.0	20
134	Degradation of polycyclic aromatic hydrocarbons by hydrogen peroxide catalyzed by heterogeneous polymeric metal chelates. Applied Catalysis B: Environmental, 2005, 59, 267-274.	20.2	19
135	Hyphenated ultra high-performance liquid chromatography–Nano Quantity Analyte Detector technique for determination of compounds with low UV absorption. Journal of Chromatography A, 2009, 1216, 5774-5778.	3.7	19
136	Respiration in wood ant (Formica aquilonia) nests as affected by altitudinal and seasonal changes in temperature. Soil Biology and Biochemistry, 2015, 86, 50-57.	8.8	19
137	Dynamics of a vertical-flow windrow vermicomposting system. Waste Management and Research, 2017, 35, 1121-1128.	3.9	19
138	Recent advances in PCB removal from historically contaminated environmental matrices. Chemosphere, 2022, 287, 132096.	8.2	19
139	Asymmetric response of root-associated fungal communities of an arbuscular mycorrhizal grass and an ectomycorrhizal tree to their coexistence in primary succession. Mycorrhiza, 2017, 27, 775-789.	2.8	18
140	The effect of native and introduced biofuel crops on the composition of soil biota communities. Biomass and Bioenergy, 2014, 60, 137-146.	5.7	17
141	Anaerobic in situ biodegradation of TNT using whey as an electron donor: a case study. New Biotechnology, 2015, 32, 701-709.	4.4	17
142	Micropollutant biodegradation and the hygienization potential of biodrying as a pretreatment method prior to the application of sewage sludge in agriculture. Ecological Engineering, 2019, 127, 212-219.	3.6	17
143	Diversity of root-associated microbial populations of Tamarix parviflora cultivated under various conditions. Applied Soil Ecology, 2018, 125, 264-272.	4.3	16
144	Photoelectrochemical and photocatalytic properties of titanium (IV) oxide nanoparticulate layers. Thin Solid Films, 2007, 515, 8455-8460.	1.8	15

#	Article	IF	CITATIONS
145	Relationships between respiration, chemical and microbial properties of afforested mine soils with different soil texture and tree species: Does the time of incubation matter. European Journal of Soil Biology, 2017, 80, 102-109.	3.2	15
146	Very-long-chain iso and anteiso branched fatty acids in N-acylphosphatidylethanolamines from a natural cyanobacterial mat of Calothrix sp Phytochemistry, 2009, 70, 655-663.	2.9	14
147	Chlorobenzoic acid degradation by Lentinus (Panus) tigrinus: In vivo and in vitro mechanistic study-evidence for P-450 involvement in the transformation. Journal of Hazardous Materials, 2013, 260, 975-983.	12.4	14
148	Soil fauna increase nitrogen loss in tilled soil with legume but reduce nitrogen loss in non-tilled soil without legume. Soil Biology and Biochemistry, 2013, 60, 105-112.	8.8	14
149	In Vitro Study of the Toxicity Mechanisms of Nanoscale Zero-Valent Iron (nZVI) and Released Iron Ions Using Earthworm Cells. Nanomaterials, 2020, 10, 2189.	4.1	14
150	Organic matter decomposition and carbon content in soil fractions as affected by a gradient of labile carbon input to a temperate forest soil. Biology and Fertility of Soils, 2020, 56, 411-421.	4.3	14
151	Mycoremediation of Organic Pollutants: Principles, Opportunities, and Pitfalls. Fungal Biology, 2016, , 185-231.	0.6	14
152	Pseudogemmobacter bohemicus gen. nov., sp. nov., a novel taxon from the Rhodobacteraceae family isolated from heavy-metal-contaminated sludge. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 2401-2407.	1.7	14
153	Nutrient addition retards decomposition and C immobilization in two wet grasslands. Hydrobiologia, 2012, 692, 67-81.	2.0	13
154	Receptor partial agonism and method to express receptor partial activation with respect to novel Full Logistic Model of mixture toxicology. Toxicology, 2018, 393, 26-33.	4.2	13
155	The effects of hydraulic/pneumatic fracturing-enhanced remediation (FRAC-IN) at a site contaminated by chlorinated ethenes: A case study. Journal of Hazardous Materials, 2021, 417, 125883.	12.4	13
156	Conversion of spent coffee grounds into vermicompost. Bioresource Technology, 2021, 341, 125925.	9.6	13
157	The role of CuZn- and Mn-superoxide dismutases in earthworm Eisenia andrei kept in two distinct field-contaminated soils. Ecotoxicology and Environmental Safety, 2018, 159, 363-371.	6.0	12
158	Implications of mycoremediated dry olive residue application and arbuscular mycorrhizal fungi inoculation on the microbial community composition and functionality in a metal-polluted soil. Journal of Environmental Management, 2019, 247, 756-765.	7.8	12
159	Assessment of agonistic and antagonistic properties of widely used oral care antimicrobial substances toward steroid estrogenic and androgenic receptors. Chemosphere, 2019, 217, 534-541.	8.2	12
160	Lamellar micelles-mediated synthesis of nanoscale thick sheets of titania. Materials Letters, 2007, 61, 2931-2934.	2.6	11
161	Separation of PCBs by liquid chromatography on reversed phase sub-2-micron particle columns. Talanta, 2010, 80, 1849-1855.	5. 5	11
162	Sensitive GC/MS determination of 15 isomers of chlorobenzoic acids in accelerated solvent extracts of soils historically contaminated with PCBs and validation of the entire method. International Journal of Environmental Analytical Chemistry, 2014, 94, 822-836.	3.3	11

#	Article	IF	Citations
163	Relative importance of honeydew and resin for the microbial activity in wood ant nest and forest floor substrate – a laboratory study. Soil Biology and Biochemistry, 2018, 117, 1-4.	8.8	11
164	Different twig litter (Salix caprea) diameter does affect microbial community activity and composition but not decay rate. FEMS Microbiology Ecology, 2018, 94, .	2.7	11
165	Microbial communities in local and transplanted soils along a latitudinal gradient. Catena, 2019, 173, 456-464.	5.0	11
166	Vermicomposting of sludge from a malt house. Waste Management, 2020, 118, 232-240.	7.4	11
167	Understanding the toxicity mechanism of CuO nanoparticles: the intracellular view of exposed earthworm cells. Environmental Science: Nano, 2021, 8, 2464-2477.	4.3	11
168	Passive sampling of pharmaceuticals and personal care products in aquatic environments. European Journal of Environmental Sciences, 2016, 6, 43-56.	0.2	11
169	Shifts in Soil Chemical Properties and Bacterial Communities Responding to Biotransformed Dry Olive Residue Used as Organic Amendment. Microbial Ecology, 2015, 70, 231-243.	2.8	10
170	Methane and carbon dioxide flux in the profile of wood ant (<i>Formica aquilonia</i>) nests and the surrounding forest floor during a laboratory incubation. FEMS Microbiology Ecology, 2016, 92, fiw141.	2.7	10
171	Enhancing the lipid productivity of yeasts with trace concentrations of iron nanoparticles. Folia Microbiologica, 2016, 61, 329-335.	2.3	10
172	Assessment of soil microbial communities involved in cellulose utilization at two contrasting Alpine forest sites. Soil Biology and Biochemistry, 2019, 129, 13-16.	8.8	10
173	Long-term effects of earthworms (Lumbricus rubellus Hoffmeister, 1843) on activity and composition of soil microbial community under laboratory conditions. Applied Soil Ecology, 2020, 150, 103463.	4.3	10
174	Evaluation of Hybrid Constructed Wetland Performance and Reuse of Treated Wastewater in Agricultural Irrigation. Water (Switzerland), 2021, 13, 1165.	2.7	10
175	Synthesis of zirconia-immobilized copper chelates for catalytic decomposition of hydrogen peroxide and the oxidation of polycyclic aromatic hydrocarbons. Chemosphere, 2008, 72, 1721-1726.	8.2	9
176	Biodegradability of Dental Care Antimicrobial Agents Chlorhexidine and Octenidine by Ligninolytic Fungi. Molecules, 2020, 25, 400.	3.8	9
177	Degradation Products of Polychlorinated Biphenyls and Their In Vitro Transformation by Ligninolytic Fungi. Toxics, 2021, 9, 81.	3.7	9
178	Composting and vermicomposting used to break down and remove pollutants from organic waste: a mini review. European Journal of Environmental Sciences, 2020, 10, 9-14.	0.2	9
179	The driving factors of per- and polyfluorinated alkyl substance (PFAS) accumulation in selected fish species: The influence of position in river continuum, fish feed composition, and pollutant properties. Science of the Total Environment, 2022, 816, 151662.	8.0	9
180	Effect of methyltert-butyl ether in standard tests for mutagenicity and environmental toxicity. Environmental Toxicology, 2006, 21, 599-605.	4.0	8

#	Article	IF	CITATIONS
181	Determination of 15 isomers of chlorobenzoic acid in soil samples using accelerated sample extraction followed by liquid chromatography. Talanta, 2011, 84, 1141-1147.	5.5	8
182	Searching for Heracleum mantegazzianum allelopathy in vitro and in a garden experiment. Biological Invasions, 2015, 17, 987-1003.	2.4	8
183	New insight into isobolographic analysis for combinations of a full and partial agonist: Curved isoboles. Toxicology, 2018, 402-403, 9-16.	4.2	8
184	Bear trade in the Czech Republic: an analysis of legal and illegal international trade from 2005 to 2020. European Journal of Wildlife Research, 2020, 66, 1.	1.4	8
185	In Vitro Interactions of TiO2 Nanoparticles with Earthworm Coelomocytes: Immunotoxicity Assessment. Nanomaterials, 2021, 11, 250.	4.1	8
186	Biphenyl 2,3-Dioxygenase in Pseudomonas alcaliphila JAB1 Is Both Induced by Phenolics and Monoterpenes and Involved in Their Transformation. Frontiers in Microbiology, 2021, 12, 657311.	3.5	8
187	Microbial communities in soil macro-aggregates with less connected networks respire less across successional and geographic gradients. European Journal of Soil Biology, 2022, 108, 103378.	3.2	8
188	Transcriptional response of ligninâ€degrading enzymes to 17αâ€ethinyloestradiol in two white rots. Microbial Biotechnology, 2013, 6, 300-306.	4.2	7
189	Biodegradation of Aromatic Pollutants by Ligninolytic Fungal Strains. Environmental Science and Engineering, 2012, , 291-316.	0.2	6
190	Separation of regioisomers and enantiomers of triacylglycerols containing branched fatty acids (iso) Tj ETQq0 0	0 rgBT /Ον 2.4	erlock 10 Tf !
191	Differences in the flow of spruce-derived needle leachates and root exudates through a temperate coniferous forest mineral topsoil. Geoderma, 2022, 405, 115441.	5.1	6
192	Evaluation of estrogenic and antiestrogenic activity in sludge and explanation of individual compound contributions. Journal of Hazardous Materials, 2022, 423, 127108.	12.4	6
193	Changes in the root microbiome of four plant species with different mycorrhizal types across a nitrogen deposition gradient in ombrotrophic bogs. Soil Biology and Biochemistry, 2022, 169, 108673.	8.8	6
194	The role of bacteria and protists in nitrogen turnover in ant nest and forest floor material: A laboratory experiment. European Journal of Soil Biology, 2015, 69, 66-73.	3.2	5
195	Decomposition of labile and recalcitrant coniferous litter fractions affected by temperature during the growing season. Journal of Forestry Research, 2020, 31, 1115-1121.	3.6	5
196	Microplasticsâ€"How and What Do University Students Know about the Emerging Environmental Sustainability Issue?. Sustainability, 2020, 12, 9220.	3.2	5
197	Locally accumulated extractable compounds in mycorrhizal parts of maize roots suppress the growth of Hyphae of Glomus intraradices. Folia Geobotanica, 2003, 38, 125-138.	0.9	4
198	Performance of base hydrolysis methods in extracting bound lipids from plant material, soils, and sediments. Organic Geochemistry, 2017, 113, 97-104.	1.8	4

#	Article	IF	Citations
199	The sensitivity of multiple ecotoxicological assays for evaluating Microcystis aeruginosa cellular algal organic matter and contribution of cyanotoxins to the toxicity. Toxicon, 2021, 195, 69-77.	1.6	4
200	Predominant Biphenyl Dioxygenase From Legacy Polychlorinated Biphenyl (PCB)-Contaminated Soil Is a Part of Unusual Gene Cluster and Transforms Flavone and Flavanone. Frontiers in Microbiology, 2021, 12, 644708.	3.5	4
201	Composting Practices for the Remediation of Matrices Contaminated by Recalcitrant Organic Pollutants. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 467-494.	0.5	4
202	Exposure of rats to exogenous endocrine disruptors 17alpha-ethinylestradiol and benzo(a)pyrene and an estrogenic hormone estradiol induces expression of cytochromes P450 involved in their metabolism. Neuroendocrinology Letters, 2016, 37, 84-94.	0.2	4
203	Photochemical degradation of polybrominated diphenyl ethers in microreactor. Research on Chemical Intermediates, 2015, 41, 9373-9381.	2.7	3
204	Estimation of competitive antagonist affinity by the Schild method and from functional inhibition curves using a novel form of the Gaddum equation. Toxicology, 2019, 420, 21-28.	4.2	3
205	Impact of plant species and atmospheric CO ₂ concentration on rhizodeposition and soil microbial activity and community composition. Journal of Plant Nutrition and Soil Science, 2020, 183, 327-337.	1.9	3
206	Soil Organic Carbon Content Decreases in Both Surface and Subsoil Mineral Horizons by Simulated Future Increases in Labile Carbon Inputs in a Temperate Coniferous Forest. Ecosystems, 2021, 24, 2028-2041.	3.4	3
207	PILOT-SCALE VERMICOMPOSTING OF DEWATERED SEWAGE SLUDGE FROM MEDIUM-SIZED WWTP. Detritus, 2022, , 35-41.	0.9	3
208	Biodegradation of methyl tert-butyl ether using bacterial strains. Folia Microbiologica, 2008, 53, 411-416.	2.3	2
209	Analytical determination of oestrogenic endocrine disruptors: the method of choice for wastewater treatment plant effluents. Environmental Chemistry, 2021, 18, 143-155.	1.5	2
210	Comparison of temperature and oxygen concentration driven aeration methods for biodrying of municipal solid waste. European Journal of Environmental Sciences, 2021, 11, 38-45.	0.2	2
211	Effects of silver sulfide nanoparticles on the earthworm Eisenia andrei. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 257, 109355.	2.6	2
212	Asymmetric Interaction Between Two Mycorrhizal Fungal Guilds and Consequences for the Establishment of Their Host Plants. Frontiers in Plant Science, 0, 13, .	3.6	2
213	"Self activationâ€properties of the nanophase photocatalytic titania precursors. Reaction Kinetics and Catalysis Letters, 2005, 86, 281-289.	0.6	1
214	A study on 17alpha-ethinylestradiol metabolism in rat and Pleurotus ostreatus. Neuroendocrinology Letters, 2015, 36 Suppl 1, 5-12.	0.2	1
215	Are ivory antiques actually antique?. Crime, Law and Social Change, 2021, 76, 219-231.	1.1	0
216	Tool V: Microbiological Methods for Monitoring nZVI Performance in Groundwater Conditions. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 645-657.	0.5	0

#	Article	IF	CITATIONS
217	Key parameter optimization using multivariable linear model for the evaluation of the in vitro estrogenic activity assay in T47D cell lines (CXCLâ€ŧest). Journal of Applied Toxicology, 2021, , .	2.8	O
218	Methods for Design and Bioremediation Applications of Reactors Based on Immobilized Fungi. Springer Protocols, 2022, , 71-92.	0.3	0
219	The invasive tree Piper aduncum alters soil microbiota and nutrient content in fallow land following small scale slash-and-burn farming in tropical lowland forest in Papua New Guinea. Applied Soil Ecology, 2022, 176, 104487.	4.3	0