
Do Han Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4019147/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Integrated Quantitative Phosphoproteomics and Cell-Based Functional Screening Reveals Specific Pathological Cardiac Hypertrophy-Related Phosphorylation Sites. Molecules and Cells, 2021, 44, 500-516.	2.6	4
2	S92 phosphorylation induces structural changes in the N-terminus domain of human mitochondrial calcium uniporter. Scientific Reports, 2020, 10, 9131.	3.3	10
3	Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes. Cell Death and Disease, 2019, 10, 835.	6.3	203
4	Role of SIRT1 in Modulating Acetylation of the Sarco-Endoplasmic Reticulum Ca ²⁺ -ATPase in Heart Failure. Circulation Research, 2019, 124, e63-e80.	4.5	84
5	CCN5 knockout mice exhibit lipotoxic cardiomyopathy with mild obesity and diabetes. PLoS ONE, 2018, 13, e0207228.	2.5	12
6	A novel system-level approach using RNA-sequencing data identifies miR-30-5p and miR-142a-5p as key regulators of apoptosis in myocardial infarction. Scientific Reports, 2018, 8, 14638.	3.3	16
7	Micro <scp>RNA</scp> â€101b attenuates cardiomyocyte hypertrophy by inhibiting protein kinase C epsilon signaling. FEBS Letters, 2017, 591, 16-27.	2.8	9
8	STIM2 regulates both intracellular Ca2+ distribution and Ca2+ movement in skeletal myotubes. Scientific Reports, 2017, 7, 17936.	3.3	15
9	Tauroursodeoxycholic acid (TUDCA) attenuates pressure overload-induced cardiac remodeling by reducing endoplasmic reticulum stress. PLoS ONE, 2017, 12, e0176071.	2.5	66
10	Salubrinal Alleviates Pressure Overload-Induced Cardiac Hypertrophy by Inhibiting Endoplasmic Reticulum Stress Pathway. Molecules and Cells, 2017, 40, 66-72.	2.6	21
11	Structure and function of the Nâ€ŧerminal domain of the human mitochondrial calcium uniporter. EMBO Reports, 2015, 16, 1318-1333.	4.5	81
12	Pik3ip1 Modulates Cardiac Hypertrophy by Inhibiting PI3K Pathway. PLoS ONE, 2015, 10, e0122251.	2.5	42
13	miR-185 Plays an Anti-Hypertrophic Role in the Heart via Multiple Targets in the Calcium-Signaling Pathways. PLoS ONE, 2015, 10, e0122509.	2.5	54
14	The molecular interaction of heart LIM protein (HLP) with RyR2 and caveolin-3 is essential for Ca 2+ -induced Ca 2+ release in the heart. Biochemical and Biophysical Research Communications, 2015, 463, 975-981.	2.1	5
15	Deep sequencing-generated modules demonstrate coherent expression patterns for various cardiac diseases. Gene, 2015, 574, 53-60.	2.2	1
16	Exon 9 skipping of apoptotic caspase-2 pre-mRNA is promoted by SRSF3 through interaction with exon 8. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 25-32.	1.9	25
17	Sumoylation regulates ER stress response by modulating calreticulin gene expression in XBP-1-dependent mode in Caenorhabditis elegans. International Journal of Biochemistry and Cell Biology, 2014, 53, 399-408.	2.8	23
18	Identification of tissue-enriched novel transcripts and novel exons in mice. BMC Genomics, 2014, 15, 592.	2.8	13

DO HAN ΚΙΜ

#	Article	IF	CITATIONS
19	Interplay Between the Oxidoreductase PDIA6 and microRNA-322 Controls the Response to Disrupted Endoplasmic Reticulum Calcium Homeostasis. Science Signaling, 2014, 7, ra54.	3.6	92
20	Targeted ablation of the histidine-rich Ca2+-binding protein (HRC) gene is associated with abnormal SR Ca2+-cycling and severe pathology under pressure-overload stress. Basic Research in Cardiology, 2013, 108, 344.	5.9	27
21	Graphene Films Show Stable Cell Attachment and Biocompatibility with Electrogenic Primary Cardiac Cells. Molecules and Cells, 2013, 36, 577-582.	2.6	36
22	IPAVS: Integrated Pathway Resources, Analysis and Visualization System. Nucleic Acids Research, 2012, 40, D803-D808.	14.5	20
23	The chemical chaperone 4-phenylbutyric acid attenuates pressure-overload cardiac hypertrophy by alleviating endoplasmic reticulum stress. Biochemical and Biophysical Research Communications, 2012, 421, 578-584.	2.1	81
24	Deep RNA Sequencing Reveals Novel Cardiac Transcriptomic Signatures for Physiological and Pathological Hypertrophy. PLoS ONE, 2012, 7, e35552.	2.5	87
25	AAV-Mediated Knock-Down of HRC Exacerbates Transverse Aorta Constriction-Induced Heart Failure. PLoS ONE, 2012, 7, e43282.	2.5	14
26	Biology of Endoplasmic Reticulum Stress in the Heart. Circulation Research, 2010, 107, 1185-1197.	4.5	266
27	Characterization of junctate–SERCA2a interaction in murine cardiomyocyte. Biochemical and Biophysical Research Communications, 2009, 390, 1389-1394.	2.1	12
28	ldentification of mouse heart transcriptomic network sensitive to various heart diseases. Biotechnology Journal, 2008, 3, 648-658.	3.5	6
29	Overexpression of junctate induces cardiac hypertrophy and arrhythmia via altered calcium handling. Journal of Molecular and Cellular Cardiology, 2008, 44, 672-682.	1.9	28
30	Current research trends in systems biology. Animal Cells and Systems, 2008, 12, 181-191.	2.2	2
31	Multiple functions of junctin and junctate, two distinct isoforms of aspartyl beta-hydroxylase. Biochemical and Biophysical Research Communications, 2007, 362, 1-4.	2.1	22
32	PICOT Inhibits Cardiac Hypertrophy and Enhances Ventricular Function and Cardiomyocyte Contractility. Circulation Research, 2006, 99, 307-314.	4.5	83
33	Cardiac remodeling and atrial fibrillation in transgenic miceoverexpressing junctin. FASEB Journal, 2002, 16, 1310-1312.	0.5	76
34	Molecular Cloning and Characterization of Mouse Cardiac Junctate Isoforms. Biochemical and Biophysical Research Communications, 2001, 289, 882-887.	2.1	22