
John S Klassen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4018749/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sialic acid-containing glycolipids mediate binding and viral entry of SARS-CoV-2. Nature Chemical Biology, 2022, 18, 81-90.	8.0	141
2	Fucosylated Human Milk Oligosaccharide Foraging within the Species Bifidobacterium pseudocatenulatum Is Driven by Glycosyl Hydrolase Content and Specificity. Applied and Environmental Microbiology, 2022, 88, AEM0170721.	3.1	18
3	Mass Spectrometry-Based Shotgun Glycomics Using Labeled Glycan Libraries. Analytical Chemistry, 2022, 94, 4997-5005.	6.5	4
4	CRISPR-Click Enables Dual-Gene Editing with Modular Synthetic sgRNAs. Bioconjugate Chemistry, 2022, 33, 858-868.	3.6	2
5	Structural and binding characterization of the LacdiNAc-specific adhesin (LabA; HopD) exodomain from Helicobacter pylori. Current Research in Structural Biology, 2021, 3, 19-29.	2.2	4
6	Submicron Emitters Enable Reliable Quantification of Weak Protein–Glycan Interactions by ESI-MS. Analytical Chemistry, 2021, 93, 4231-4239.	6.5	25
7	Carbohydrate Sulfation As a Mechanism for Fine-Tuning Siglec Ligands. ACS Chemical Biology, 2021, 16, 2673-2689.	3.4	31
8	Quantifying Carbohydrate-Active Enzyme Activity with Glycoprotein Substrates Using Electrospray Ionization Mass Spectrometry and Center-of-Mass Monitoring. Analytical Chemistry, 2021, 93, 15262-15270.	6.5	1
9	Influence of labeling on the glycan affinities and specificities of glycan-binding proteins. A case study involving a C-terminal fragment of human galectin-3. Clycobiology, 2020, 30, 49-57.	2.5	4
10	An Inactive Dispersin B Probe for Monitoring PNAG Production in Biofilm Formation. ACS Chemical Biology, 2020, 15, 1204-1211.	3.4	13
11	A versatile soluble siglec scaffold for sensitive and quantitative detection of glycan ligands. Nature Communications, 2020, 11, 5091.	12.8	45
12	Neoglycolipids as Glycosphingolipid Surrogates for Protein Binding Studies Using Nanodiscs and Native Mass Spectrometry. Analytical Chemistry, 2020, 92, 14189-14196.	6.5	3
13	Mass Spectrometry-Based Shotgun Glycomics for Discovery of Natural Ligands of Glycan-Binding Proteins. Analytical Chemistry, 2020, 92, 14012-14020.	6.5	20
14	Structural and biochemical characterization of the exopolysaccharide deacetylase Agd3 required for Aspergillus fumigatus biofilm formation. Nature Communications, 2020, 11, 2450.	12.8	38
15	Probing Heteromultivalent Protein–Clycosphingolipid Interactions using Native Mass Spectrometry and Nanodiscs. Analytical Chemistry, 2020, 92, 3923-3931.	6.5	8
16	CUPRA-ZYME: An Assay for Measuring Carbohydrate-Active Enzyme Activities, Pathways, and Substrate Specificities. Analytical Chemistry, 2020, 92, 3228-3236.	6.5	6
17	A quantitative, high-throughput method identifies protein–glycan interactions via mass spectrometry. Communications Biology, 2019, 2, 268.	4.4	24
18	Sliding Window Adduct Removal Method (SWARM) for Enhanced Electrospray Ionization Mass Spectrometry Binding Data. Journal of the American Society for Mass Spectrometry, 2019, 30, 1446-1454.	2.8	14

#	Article	IF	CITATIONS
19	Crystal structures of human lysosomal EPDR1 reveal homology with the superfamily of bacterial lipoprotein transporters. Communications Biology, 2019, 2, 52.	4.4	18
20	The small RbcS-like domains of the β-carboxysome structural protein CcmM bind RubisCO at a site distinct from that binding the RbcS subunit. Journal of Biological Chemistry, 2019, 294, 2593-5195.	3.4	44
21	Multipronged ESI–MS Approach for Studying Glycan-Binding Protein Interactions with Glycoproteins. Analytical Chemistry, 2019, 91, 2140-2147.	6.5	10
22	Synthetic polyprenol-pyrophosphate linked oligosaccharides are efficient substrates for mycobacterial galactan biosynthetic enzymes. Organic and Biomolecular Chemistry, 2018, 16, 1939-1957.	2.8	7
23	Human Neuraminidase Isoenzymes Show Variable Activities for 9- <i>O</i> -Acetyl-sialoside Substrates. ACS Chemical Biology, 2018, 13, 922-932.	3.4	27
24	Genetically-encoded fragment-based discovery (GE-FBD) of glycopeptide ligands with differential selectivity for antibodies related to mycobacterial infections. Organic and Biomolecular Chemistry, 2018, 16, 223-227.	2.8	14
25	Quantifying the binding stoichiometry and affinity of histo-blood group antigen oligosaccharides for human noroviruses. Glycobiology, 2018, 28, 488-498.	2.5	14
26	Screening natural libraries of human milk oligosaccharides against lectins using CaR-ESI-MS. Analyst, The, 2018, 143, 536-548.	3.5	17
27	Bioengineered Norovirus S ₆₀ Nanoparticles as a Multifunctional Vaccine Platform. ACS Nano, 2018, 12, 10665-10682.	14.6	28
28	Detecting Protein–Glycolipid Interactions Using CaR-ESI-MS and Model Membranes: Comparison of Pre-loaded and Passively Loaded Picodiscs. Journal of the American Society for Mass Spectrometry, 2018, 29, 1493-1504.	2.8	8
29	The Peptidisc, a simple method for stabilizing membrane proteins in detergent-free solution. ELife, 2018, 7, .	6.0	119
30	Stabilizing protein-ligand complexes in ESI–MS using solution additives: Comparing the effects of amino acids and imidazole. International Journal of Mass Spectrometry, 2017, 420, 2-8.	1.5	5
31	Human Milk Oligosaccharide Specificities of Human Galectins. Comparison of Electrospray Ionization Mass Spectrometry and Glycan Microarray Screening Results. Analytical Chemistry, 2017, 89, 4914-4921.	6.5	33
32	Optogenetic control with a photocleavable protein, PhoCl. Nature Methods, 2017, 14, 391-394.	19.0	117
33	High-Throughput Label- and Immobilization-Free Screening of Human Milk Oligosaccharides Against Lectins. Analytical Chemistry, 2017, 89, 8713-8722.	6.5	24
34	Investigating the Influence of Membrane Composition on Protein–Glycolipid Binding Using Nanodiscs and Proxy Ligand Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2017, 89, 9330-9338.	6.5	14
35	Delivering Transmembrane Peptide Complexes to the Gas Phase Using Nanodiscs and Electrospray Ionization. Journal of the American Society for Mass Spectrometry, 2017, 28, 2054-2065.	2.8	7
36	Screening Oligosaccharide Libraries against Lectins Using the Proxy Protein Electrospray Ionization Mass Spectrometry Assay. Analytical Chemistry, 2016, 88, 8224-8231.	6.5	7

#	Article	IF	CITATIONS
37	Structure and Stability of Carbohydrate–Lipid Interactions. Methylmannose Polysaccharide–Fatty Acid Complexes. ChemBioChem, 2016, 17, 1571-1578.	2.6	5
38	Screening Anti-Cancer Drugs against Tubulin using Catch-and-Release Electrospray Ionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2016, 27, 876-885.	2.8	4
39	Screening Glycolipids Against Proteins in Vitro Using Picodiscs and Catch-and-Release Electrospray Ionization-Mass Spectrometry. Analytical Chemistry, 2016, 88, 4742-4750.	6.5	20
40	Detecting Protein–Glycolipid Interactions Using Glycomicelles and CaR-ESI-MS. Journal of the American Society for Mass Spectrometry, 2016, 27, 1878-1886.	2.8	11
41	Characterizing the Size and Composition of Saposin A Lipoprotein Picodiscs. Analytical Chemistry, 2016, 88, 9524-9531.	6.5	20
42	Influence of Sulfolane on ESI-MS Measurements of Protein–Ligand Affinities. Journal of the American Society for Mass Spectrometry, 2016, 27, 498-506.	2.8	21
43	Silent Encoding of Chemical Post-Translational Modifications in Phage-Displayed Libraries. Journal of the American Chemical Society, 2016, 138, 32-35.	13.7	46
44	Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2016, 27, 83-90.	2.8	5
45	Tulane virus recognizes sialic acids as cellular receptors. Scientific Reports, 2015, 5, 11784.	3.3	33
46	Recognition of human milk oligosaccharides by bacterial exotoxins. Glycobiology, 2015, 25, 845-854.	2.5	37
47	Magnetic field assisted programming of particle shapes and patterns. Soft Matter, 2015, 11, 7151-7158.	2.7	5
48	Affinities of human histo-blood group antigens for norovirus capsid protein complexes. Glycobiology, 2015, 25, 170-180.	2.5	23
49	Quantifying Protein-Carbohydrate Interactions Using Liquid Sample Desorption Electrospray Ionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2015, 26, 98-106.	2.8	20
50	Genetically Encoded Fragment-Based Discovery of Glycopeptide Ligands for Carbohydrate-Binding Proteins. Journal of the American Chemical Society, 2015, 137, 5248-5251.	13.7	67
51	Protein–Glycolipid Interactions Studied in Vitro Using ESI-MS and Nanodiscs: Insights into the Mechanisms and Energetics of Binding. Analytical Chemistry, 2015, 87, 4888-4896.	6.5	30
52	Picodiscs for Facile Protein-Glycolipid Interaction Analysis. Analytical Chemistry, 2015, 87, 4402-4408.	6.5	27
53	Evaluation of a focused virtual library of heterobifunctional ligands for Clostridium difficile toxins. Organic and Biomolecular Chemistry, 2015, 13, 283-298.	2.8	4
54	Mycobacteriophage cell binding proteins for the capture of mycobacteria. Bacteriophage, 2014, 4, e960346.	1.9	10

#	Article	IF	CITATIONS
55	P. aeruginosa SGNH Hydrolase-Like Proteins AlgJ and AlgX Have Similar Topology but Separate and Distinct Roles in Alginate Acetylation. PLoS Pathogens, 2014, 10, e1004334.	4.7	54
56	Measuring Positive Cooperativity Using the Direct ESI-MS Assay. Cholera Toxin B Subunit Homopentamer Binding to GM1 Pentasaccharide. Journal of the American Society for Mass Spectrometry, 2014, 25, 104-110.	2.8	47
57	Identifying Carbohydrate Ligands of a Norovirus P Particle using a Catch and Release Electrospray Ionization Mass Spectrometry Assay. Journal of the American Society for Mass Spectrometry, 2014, 25, 111-119.	2.8	22
58	Structural Basis for Antibody Recognition in the Receptor-binding Domains of Toxins A and B from Clostridium difficile. Journal of Biological Chemistry, 2014, 289, 2331-2343.	3.4	43
59	Discovery of Light-Responsive Ligands through Screening of a Light-Responsive Genetically Encoded Library. ACS Chemical Biology, 2014, 9, 443-450.	3.4	63
60	Screening Carbohydrate Libraries for Protein Interactions Using the Direct ESI-MS Assay. Applications to Libraries of Unknown Concentration. Journal of the American Society for Mass Spectrometry, 2014, 25, 1908-1916.	2.8	23
61	Catalytic Mechanism and Mode of Action of the Periplasmic Alginate Epimerase AlgG. Journal of Biological Chemistry, 2014, 289, 6006-6019.	3.4	39
62	Nanodiscs and Electrospray Ionization Mass Spectrometry: A Tool for Screening Glycolipids Against Proteins. Analytical Chemistry, 2014, 86, 5271-5277.	6.5	37
63	Energetics of Intermolecular Hydrogen Bonds in a Hydrophobic Protein Cavity. Journal of the American Society for Mass Spectrometry, 2014, 25, 742-750.	2.8	3
64	Fluorine Bonding Enhances the Energetics of Protein-Lipid Binding in the Gas Phase. Journal of the American Society for Mass Spectrometry, 2014, 25, 751-757.	2.8	1
65	Gangliosides are Ligands for Human Noroviruses. Journal of the American Chemical Society, 2014, 136, 12631-12637.	13.7	56
66	Mapping Protein–Ligand Interactions in the Gas Phase Using a Functional Group Replacement Strategy. Comparison of CID and BIRD Activation Methods. Journal of the American Society for Mass Spectrometry, 2013, 24, 988-996.	2.8	8
67	Quantifying Protein–Ligand Interactions by Direct Electrospray Ionization-MS Analysis: Evidence of Nonuniform Response Factors Induced by High Molecular Weight Molecules and Complexes. Analytical Chemistry, 2013, 85, 8919-8922.	6.5	19
68	Chirality recognition of the protonated serine dimer and octamer by infrared multiphoton dissociation spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 1873-1886.	2.8	30
69	Dissociation Kinetics of the Streptavidin–Biotin Interaction Measured Using Direct Electrospray Ionization Mass Spectrometry Analysis. Journal of the American Society for Mass Spectrometry, 2013, 24, 49-56.	2.8	40
70	Quantifying Protein Interactions with Isomeric Carbohydrate Ligands Using a Catch and Release Electrospray Ionization-Mass Spectrometry Assay. Analytical Chemistry, 2013, 85, 7637-7644.	6.5	21
71	Dissociation of Multisubunit Protein–Ligand Complexes in the Gas Phase. Evidence for Ligand Migration. Journal of the American Society for Mass Spectrometry, 2013, 24, 1573-1583.	2.8	15
72	Affinities of recombinant norovirus P dimers for human blood group antigens. Glycobiology, 2013, 23, 276-285.	2.5	34

#	Article	IF	CITATIONS
73	Quantifying Ligand Binding to Large Protein Complexes Using Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2012, 84, 3867-3870.	6.5	40
74	Electrospray Ionization-Induced Protein Unfolding. Journal of the American Society for Mass Spectrometry, 2012, 23, 2122-2131.	2.8	16
75	Applications of a Catch and Release Electrospray Ionization Mass Spectrometry Assay for Carbohydrate Library Screening. Analytical Chemistry, 2012, 84, 50-58.	6.5	48
76	Quantifying Carbohydrate–Protein Interactions by Electrospray Ionization Mass Spectrometry Analysis. Biochemistry, 2012, 51, 4244-4253.	2.5	31
77	Energetics of Lipid Binding in a Hydrophobic Protein Cavity. Journal of the American Chemical Society, 2012, 134, 3054-3060.	13.7	27
78	Kinetic Stability of the Streptavidin–Biotin Interaction Enhanced in the Gas Phase. Journal of the American Chemical Society, 2012, 134, 16586-16596.	13.7	22
79	Deuterium Kinetic Isotope Effects on the Dissociation of a Protein–Fatty Acid Complex in the Gas Phase. Journal of the American Chemical Society, 2012, 134, 5931-5937.	13.7	7
80	Carbohydrate–Lipid Interactions: Affinities of Methylmannose Polysaccharides for Lipids in Aqueous Solution. Chemistry - A European Journal, 2012, 18, 12059-12067.	3.3	14
81	Protein–Glycosphingolipid Interactions Revealed Using Catch-and-Release Mass Spectrometry. Analytical Chemistry, 2012, 84, 7618-7621.	6.5	47
82	Reliable Determinations of Protein–Ligand Interactions by Direct ESI-MS Measurements. Are We There Yet?. Journal of the American Society for Mass Spectrometry, 2012, 23, 431-441.	2.8	204
83	Substrate Recognition of the Membrane-Associated Sialidase NEU3 Requires a Hydrophobic Aglycone. Biochemistry, 2011, 50, 6753-6762.	2.5	43
84	Identifying Specific Small-Molecule Interactions Using Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2011, 83, 5160-5167.	6.5	16
85	Binding of Clostridium difficile toxins to human milk oligosaccharides. Glycobiology, 2011, 21, 1217-1227.	2.5	40
86	Blackbody Infrared Radiative Dissociation of Protonated Oligosaccharides. Journal of the American Society for Mass Spectrometry, 2011, 22, 2171-2178.	2.8	12
87	Quantifying Protein-Fatty Acid Interactions Using Electrospray Ionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2011, 22, 310-318.	2.8	56
88	Trapping and characterization of covalent intermediates of mutant retaining glycosyltransferases. Glycobiology, 2011, 21, 547-552.	2.5	70
89	Exploiting Bacterial Glycosylation Machineries for the Synthesis of a Lewis Antigen-containing Glycoprotein. Journal of Biological Chemistry, 2011, 286, 37887-37894.	3.4	37
90	Nonspecific interactions between proteins and charged biomolecules in electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 2010, 21, 472-481.	2.8	42

#	Article	IF	CITATIONS
91	Quantifying labile protein—Ligand interactions using electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 2010, 21, 1893-1899.	2.8	42
92	Evidence that Water Can Reduce the Kinetic Stability of Proteinâ^'Hydrophobic Ligand Interactions. Journal of the American Chemical Society, 2010, 132, 17658-17660.	13.7	26
93	Direct Quantification of Proteinâ^'Metal Ion Affinities by Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2010, 82, 2170-2174.	6.5	38
94	Comparative study of substrate and product binding to the human ABO(H) blood group glycosyltransferases. Glycobiology, 2009, 19, 1224-1234.	2.5	34
95	From alpha to beta: identification of amino acids required for the <i>N</i> â€acetyllactosamineâ€specific lectin″ike activity of bundlin. Molecular Microbiology, 2009, 72, 859-868.	2.5	11
96	Identifying nonspecific ligand binding in electrospray ionization mass spectrometry using the reporter molecule method. Journal of the American Society for Mass Spectrometry, 2009, 20, 1242-1250.	2.8	24
97	Hydrophobic Proteinâ~'Ligand Interactions Preserved in the Gas Phase. Journal of the American Chemical Society, 2009, 131, 15980-15981.	13.7	96
98	Gas Phase Stabilization of Noncovalent Protein Complexes Formed by Electrospray Ionization. Analytical Chemistry, 2009, 81, 7801-7806.	6.5	63
99	An Entropically Efficient Supramolecular Inhibition Strategy for Shiga Toxins. Angewandte Chemie - International Edition, 2008, 47, 672-676.	13.8	26
100	Elucidating the Intermolecular Interactions within a Desolvated Proteinâ^'Ligand Complex. An Experimental and Computational Study. Journal of the American Chemical Society, 2008, 130, 1214-1226.	13.7	32
101	Temperature-dependent cooperativity in donor-acceptor substrate binding to the human blood group glycosyltransferases. Glycobiology, 2008, 18, 587-592.	2.5	39
102	Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile. Glycobiology, 2008, 18, 698-706.	2.5	60
103	Affinities of Shiga toxins 1 and 2 for univalent and oligovalent Pk-trisaccharide analogs measured by electrospray ionization mass spectrometry. Glycobiology, 2007, 17, 1127-1137.	2.5	42
104	Functional Characterization of Bacterial Oligosaccharyltransferases Involved in O-Linked Protein Glycosylation. Journal of Bacteriology, 2007, 189, 8088-8098.	2.2	136
105	Equivalency of Binding Sites in Proteinâ^'Ligand Complexes Revealed by Time-Resolved Tandem Mass Spectrometry. Journal of the American Chemical Society, 2007, 129, 8674-8675.	13.7	14
106	Method for Identifying Nonspecific Proteinâ^'Protein Interactions in Nanoelectrospray Ionization Mass Spectrometry. Analytical Chemistry, 2007, 79, 8301-8311.	6.5	47
107	Method for Stabilizing Proteinâ^'Ligand Complexes in Nanoelectrospray Ionization Mass Spectrometry. Analytical Chemistry, 2007, 79, 416-425.	6.5	80
108	Ligand Specificity of CS-35, a Monoclonal Antibody That Recognizes Mycobacterial Lipoarabinomannan: A Model System for Oligofuranosideâ^'Protein Recognition. Journal of the American Chemical Society, 2007, 129, 10489-10502.	13.7	77

#	Article	IF	CITATIONS
109	Influence of coulombic repulsion on the dissociation pathways and energetics of multiprotein complexes in the gas phase. Journal of the American Society for Mass Spectrometry, 2007, 18, 617-631.	2.8	46
110	Effects of single amino acid substitution on the dissociation of multiply charged multiprotein complexes in the gas phase. Journal of the American Society for Mass Spectrometry, 2007, 18, 688-692.	2.8	6
111	The bundlin pilin protein of enteropathogenic Escherichia coli is an N-acetyllactosamine-specific lectin. Cellular Microbiology, 2007, 10, 070816152918004-???.	2.1	51
112	Method for Distinguishing Specific from Nonspecific Proteinâ^'Ligand Complexes in Nanoelectrospray Ionization Mass Spectrometry. Analytical Chemistry, 2006, 78, 3010-3018.	6.5	156
113	Thermal decomposition of multiply charged T-rich oligonucleotide anions in the gas phase. Influence of internal solvation on the arrhenius parameters for neutral base loss. Journal of the American Society for Mass Spectrometry, 2006, 17, 1229-1238.	2.8	9
114	Blackbody infrared radiative dissociation of nonspecific protein-carbohydrate complexes produced by nanoelectrospray ionization: The nature of the noncovalent interactions. Journal of the American Society for Mass Spectrometry, 2005, 16, 1583-1594.	2.8	34
115	Stability of the homopentameric b subunits of shiga toxins 1 and 2 in solution and the gas phase as revealed by nanoelectrospray fourier transform ion cyclotron resonance mass spectrometry. Journal of the American Society for Mass Spectrometry, 2005, 16, 1957-1968.	2.8	29
116	Nonspecific Proteinâ^'Carbohydrate Complexes Produced by Nanoelectrospray Ionization. Factors Influencing Their Formation and Stability. Analytical Chemistry, 2005, 77, 3060-3071.	6.5	66
117	Partitioning of Solvent Effects and Intrinsic Interactions in Biological Recognition. Angewandte Chemie - International Edition, 2004, 43, 4183-4186.	13.8	23
118	Arrhenius activation parameters for the loss of neutral nucleobases from deprotonated oligonucleotide anions in the gas phase. Journal of the American Society for Mass Spectrometry, 2004, 15, 55-64.	2.8	24
119	Determination of Proteinâ^'Ligand Association Thermochemistry Using Variable-Temperature Nanoelectrospray Mass Spectrometry. Journal of the American Chemical Society, 2004, 126, 4786-4787.	13.7	67
120	Influence of Solution and Gas Phase Processes on Proteinâ^'Carbohydrate Binding Affinities Determined by Nanoelectrospray Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Analytical Chemistry, 2003, 75, 4945-4955.	6.5	154
121	Bioactive Recognition Sites May Not Be Energetically Preferred in Proteinâ^Carbohydrate Complexes in the Gas Phase. Journal of the American Chemical Society, 2003, 125, 13630-13631.	13.7	34
122	Determination of Protein–Oligosaccharide Binding by Nanoelectrospray Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry. Methods in Enzymology, 2003, 362, 376-397.	1.0	15
123	Retention of Bioactive Ligand Conformation in a Gaseous Proteinâ^'Trisaccharide Complex. Journal of the American Chemical Society, 2002, 124, 13980-13981.	13.7	25
124	Evidence for the Preservation of Specific Intermolecular Interactions in Gaseous Proteinâ~'Oligosaccharide Complexes. Journal of the American Chemical Society, 2002, 124, 9340-9341.	13.7	25
125	Thermal Dissociation of Proteinâ ~ Oligosaccharide Complexes in the Gas Phase:Â Mapping the Intrinsic Intermolecular Interactions. Journal of the American Chemical Society, 2002, 124, 5902-5913.	13.7	61
126	Thermal dissociation of the protein homodimer ecotin in the gas phase. Journal of the American Society for Mass Spectrometry, 2002, 13, 1432-1442.	2.8	37

#	Article	IF	CITATIONS
127	Thermal Decomposition of a Gaseous Multiprotein Complex Studied by Blackbody Infrared Radiative Dissociation. Investigating the Origin of the Asymmetric Dissociation Behavior. Analytical Chemistry, 2001, 73, 4647-4661.	6.5	172
128	The observation of multivalent complexes of Shiga-like toxin with globotriaoside and the determination of their stoichiometry by nanoelectrospray Fourier-transform ion cyclotron resonance mass spectrometry. Glycobiology, 2001, 11, 605-611.	2.5	58
129	Hydration of gas-phase ions formed by electrospray ionization. Journal of the American Society for Mass Spectrometry, 1999, 10, 958-968.	2.8	74
130	Dissociation energies of deoxyribose nucleotide dimer anions measured using blackbody infrared radiative dissociation. Journal of the American Society for Mass Spectrometry, 1999, 10, 1095-1104.	2.8	42
131	Blackbody infrared radiative dissociation of oligonucleotide anions. Journal of the American Society for Mass Spectrometry, 1998, 9, 1117-1124.	2.8	48
132	Activation Energies for Dissociation of Double Strand Oligonucleotide Anions:Â Evidence for Watsonâ~Crick Base Pairing in Vacuo. Journal of the American Chemical Society, 1998, 120, 9605-9613.	13.7	154
133	Collision-Induced Dissociation Threshold Energies of Protonated Glycine, Glycinamide, and Some Related Small Peptides and Peptide Amino Amides. Journal of the American Chemical Society, 1997, 119, 6552-6563.	13.7	122
134	Hydration of Gas-Phase Gramicidin S (M + 2H) lons Formed by Electrospray: The Transition From Solution to Gas-Phase Structure. Journal of the American Society for Mass Spectrometry, 1997, 8, 565-568.	2.8	82
135	Determination of Ionâ^'Solvent Equilibria in the Gas Phase. Hydration of Diprotonated Diamines and Bis(trimethylammonium) Alkanes. Journal of the American Chemical Society, 1996, 118, 12437-12442.	13.7	52
136	Reaction Enthalpies for M+L = M++ L, Where M+= Na+and K+and L = Acetamide,N-Methylacetamide,N,N-Dimethylacetamide, Glycine, and Glycylglycine, from Determinations of the Collision-Induced Dissociation Thresholds. The Journal of Physical Chemistry, 1996, 100, 14218-14227.	2.9	136
137	Determination of ion-ligand bond energies and ion fragmentation energies of electrospray-produced ions by collision-induced dissociation threshold measurements. International Journal of Mass Spectrometry and Ion Processes, 1995, 141, 217-228.	1.8	43
138	Free Energies of Hydration in the Gas Phase of the Anions of Some Oxo Acids of C, N, S, P, Cl, and I. Journal of the American Chemical Society, 1995, 117, 10563-10571.	13.7	88
139	Gas Phase Ion-Molecule Equilibria Involving Ions Produced by Electrospray. Hydration of Doubly Protonated Diamines. Journal of the American Chemical Society, 1994, 116, 12075-12076.	13.7	23
140	Droplet Electrospray Mass Spectrometry. Analytical Chemistry, 1994, 66, 3944-3949.	6.5	65