Wei Lan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/401850/publications.pdf

Version: 2024-02-01

430874 361022 1,333 47 18 35 citations h-index g-index papers 49 49 49 899 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Predicting miRNA-Disease Associations From miRNA-Gene-Disease Heterogeneous Network With Multi-Relational Graph Convolutional Network Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20, 3363-3375.	3.0	12
2	LDICDL: LncRNA-Disease Association Identification Based on Collaborative Deep Learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 1715-1723.	3.0	47
3	GANLDA: Graph attention network for IncRNA-disease associations prediction. Neurocomputing, 2022, 469, 384-393.	5.9	43
4	KGANCDA: predicting circRNA-disease associations based on knowledge graph attention network. Briefings in Bioinformatics, 2022, 23, .	6.5	33
5	Polyphyletic Loss: Litchi Flower Detection with Occlusion. Journal of Physics: Conference Series, 2022, 2171, 012041.	0.4	2
6	A comprehensive survey on computational methods of non-coding RNA and disease association prediction. Briefings in Bioinformatics, 2021, 22, .	6.5	38
7	ILDMSF: Inferring Associations Between Long Non-Coding RNA and Disease Based on Multi-Similarity Fusion. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 1106-1112.	3.0	57
8	IGNSCDA: Predicting CircRNA-Disease Associations Based on Improved Graph Convolutional Network and Negative Sampling. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, PP, 1-1.	3.0	13
9	GADTI: Graph Autoencoder Approach for DTI Prediction From Heterogeneous Network. Frontiers in Genetics, 2021, 12, 650821.	2.3	15
10	Survey of Network Embedding for Drug Analysis and Prediction. Current Protein and Peptide Science, 2021, 22, 237-250.	1.4	4
11	Predicting miRNA-Disease Association Based on Modularity Preserving Heterogeneous Network Embedding. Frontiers in Cell and Developmental Biology, 2021, 9, 603758.	3.7	10
12	Prediction of circRNA-miRNA Associations Based on Network Embedding. Complexity, 2021, 2021, 1-10.	1.6	5
13	Editorial: Graph Embedding Methods for Multiple-Omics Data Analysis. Frontiers in Genetics, 2021, 12, 762274.	2.3	O
14	A Heterogeneous Graph Convolutional Network-Based Deep Learning Model to Identify miRNA-Disease Association. Lecture Notes in Computer Science, 2021, , 130-141.	1.3	0
15	miRTRS: A Recommendation Algorithm for Predicting miRNA Targets. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 1032-1041.	3.0	10
16	Improved ASD classification using dynamic functional connectivity and multi-task feature selection. Pattern Recognition Letters, 2020, 138, 82-87.	4.2	37
17	Identification of early mild cognitive impairment using multi-modal data and graph convolutional networks. BMC Bioinformatics, 2020, 21, 123.	2.6	17
18	Predicting protein functions by using non-negative matrix factorisation with multi-networks co-regularisation. International Journal of Data Mining and Bioinformatics, 2020, 23, 318.	0.1	3

#	Article	IF	CITATIONS
19	CircR2Cancer: a manually curated database of associations between circRNAs and cancers. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	3.0	27
20	Inferring LncRNA-disease associations based on graph autoencoder matrix completion. Computational Biology and Chemistry, 2020, 87, 107282.	2.3	40
21	Predicting protein functions by using non-negative matrix factorisation with multi-networks co-regularisation. International Journal of Data Mining and Bioinformatics, 2020, 23, 318.	0.1	1
22	DNRLMF-MDA:Predicting microRNA-Disease Associations Based on Similarities of microRNAs and Diseases. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 233-243.	3.0	59
23	Identifying miRNAâ€disease association based on integrating miRNA topological similarity and functional similarity. Quantitative Biology, 2019, 7, 202-209.	0.5	7
24	KSIMC: Predicting Kinase–Substrate Interactions Based on Matrix Completion. International Journal of Molecular Sciences, 2019, 20, 302.	4.1	3
25	Identifying Interactions Between Kinases and Substrates Based on Protein–Protein Interaction Network. Journal of Computational Biology, 2019, 26, 836-845.	1.6	5
26	Predicting miRNA-disease interaction based on recommend method. Information Discovery and Delivery, 2019, 48, 35-40.	2.1	0
27	Predicting protein functions through non-negative matrix factorization regularized by protein-protein interaction network and gene functional information. , 2019, , .		5
28	Identifying Interactions Between Long Noncoding RNAs and Diseases Based on Computational Methods. Methods in Molecular Biology, 2018, 1754, 205-221.	0.9	19
29	Predicting MicroRNA-Disease Associations Based on Improved MicroRNA and Disease Similarities. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 1774-1782.	3.0	116
30	Classification of Alzheimer's Disease Using Whole Brain Hierarchical Network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 624-632.	3.0	142
31	Inferring microRNA-Environmental Factor Interactions Based on Multiple Biological Information Fusion. Molecules, 2018, 23, 2439.	3.8	14
32	KSIBW: Predicting Kinase-Substrate Interactions Based on Bi-random Walk. Lecture Notes in Computer Science, 2018, , 151-162.	1.3	0
33	LDAP: a web server for IncRNA-disease association prediction. Bioinformatics, 2017, 33, 458-460.	4.1	182
34	A novel method of predicting microRNA-disease associations based on microRNA, disease, gene and environment factor networks. Methods, 2017, 124, 69-77.	3.8	27
35	A Framework for Integrating Multiple Biological Networks to Predict MicroRNA-Disease Associations. IEEE Transactions on Nanobioscience, 2017, 16, 100-107.	3.3	30
36	SDTRLS: Predicting Drug-Target Interactions for Complex Diseases Based on Chemical Substructures. Complexity, 2017, 2017, 1-10.	1.6	15

#	Article	IF	Citations
37	Complex Brain Network Analysis and Its Applications to Brain Disorders: A Survey. Complexity, 2017, 2017, 1-27.	1.6	90
38	Predicting microRNA-environmental factor interactions based on bi-random walk and multi-label learning. , $2016, , .$		3
39	Predicting microRNA-disease associations by walking on four biological networks. , 2016, , .		1
40	Predicting MicroRNA-Disease Associations by Random Walking on Multiple Networks. Lecture Notes in Computer Science, 2016, , 127-135.	1.3	2
41	Predicting drug–target interaction using positive-unlabeled learning. Neurocomputing, 2016, 206, 50-57.	5.9	83
42	Computational approaches for prioritizing candidate disease genes based on PPI networks. Tsinghua Science and Technology, 2015, 20, 500-512.	6.1	64
43	Predicting drug-target interaction based on sequence and structure information. IFAC-PapersOnLine, 2015, 48, 12-16.	0.9	9
44	Predicting microRNA-disease associations by integrating multiple biological information. , 2015, , .		12
45	Identification of Important Positions within miRNAs by Integrating Sequential and Structural Features. Current Protein and Peptide Science, 2014, 15, 591-597.	1.4	12
46	Mining Featured Patterns of MiRNA Interaction Based on Sequence and Structure Similarity. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013, 10, 415-422.	3.0	18
47	Discovery of MicroRNA conservative sites in drosophila melanogaster., 2011,,.		O