Peter E Nugent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4018421/publications.pdf

Version: 2024-02-01

334 papers

52,847 citations

98 h-index 223 g-index

335 all docs

 $\begin{array}{c} 335 \\ \text{docs citations} \end{array}$

times ranked

335

16392 citing authors

#	Article	IF	CITATIONS
1	Measurements of Ω and Î₃ from 42 Highâ€Redshift Supernovae. Astrophysical Journal, 1999, 517, 565-586.	4.5	14,066
2	Discovery of a supernova explosion at half the age of the Universe. Nature, 1998, 391, 51-54.	27.8	2,058
3	New Constraints on ΩM, ΩÎ, andwfrom an Independent Set of 11 Highâ€Redshift Supernovae Observed with theHubble Space Telescope. Astrophysical Journal, 2003, 598, 102-137.	4.5	1,406
4	Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets. Astrophysical Journal, 2008, 686, 749-778.	4.5	1,217
5	SPECTRA AND <i>HUBBLE SPACE TELESCOPE </i> LIGHT CURVES OF SIX TYPE Ia SUPERNOVAE AT 0.511 & lt; <i>z < /i>& lt; <i>z < /i> & lt; 1.12 AND THE UNION2 COMPILATION. Astrophysical Journal, 2010, 716, 712-738.</i></i>	4.5	1,143
6	The Zwicky Transient Facility: System Overview, Performance, and First Results. Publications of the Astronomical Society of the Pacific, 2019, 131, 018002.	3.1	1,020
7	The Palomar Transient Factory: System Overview, Performance, and First Results. Publications of the Astronomical Society of the Pacific, 2009, 121, 1395-1408.	3.1	900
8	Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Monthly Notices of the Royal Astronomical Society, 2010, 406, 2650-2662.	4.4	881
9	Overview of the DESI Legacy Imaging Surveys. Astronomical Journal, 2019, 157, 168.	4.7	825
10	The Farthest Known Supernova: Support for an Accelerating Universe and a Glimpse of the Epoch of Deceleration. Astrophysical Journal, 2001, 560, 49-71.	4.5	759
11	Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing. Physical Review D, 2018, 98, .	4.7	751
12	Long Î ³ -ray bursts and core-collapse supernovae have different environments. Nature, 2006, 441, 463-468.	27.8	677
13	Exploring the Optical Transient Sky with the Palomar Transient Factory. Publications of the Astronomical Society of the Pacific, 2009, 121, 1334-1351.	3.1	618
14	THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA. Astronomical Journal, 2016, 151, 44.	4.7	582
15	Illuminating gravitational waves: A concordant picture of photons from a neutron star merger. Science, 2017, 358, 1559-1565.	12.6	559
16	The Dark Energy Survey: Data Release 1. Astrophysical Journal, Supplement Series, 2018, 239, 18.	7.7	455
17	The Zwicky Transient Facility: Science Objectives. Publications of the Astronomical Society of the Pacific, 2019, 131, 078001.	3.1	453
18	Hydrogen-poor superluminous stellar explosions. Nature, 2011, 474, 487-489.	27.8	440

#	Article	IF	CITATIONS
19	The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature, 2006, 443, 308-311.	27.8	433
20	Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star. Nature, 2011, 480, 344-347.	27.8	412
21	Supernova 2007bi as a pair-instability explosion. Nature, 2009, 462, 624-627.	27.8	399
22	A CONTINUUM OF H- TO He-RICH TIDAL DISRUPTION CANDIDATES WITH A PREFERENCE FOR E+A GALAXIES. Astrophysical Journal, 2014, 793, 38.	4.5	332
23	Evidence for a Spectroscopic Sequence among Type la Supernovae. Astrophysical Journal, 1995, 455, .	4.5	303
24	NEARBY SUPERNOVA FACTORY OBSERVATIONS OF SN 2007if: FIRST TOTAL MASS MEASUREMENT OF A SUPER-CHANDRASEKHAR-MASS PROGENITOR. Astrophysical Journal, 2010, 713, 1073-1094.	4.5	292
25	An Extremely Luminous Panchromatic Outburst from the Nucleus of a Distant Galaxy. Science, 2011, 333, 199-202.	12.6	290
26	PTF 11kx: A Type la Supernova with a Symbiotic Nova Progenitor. Science, 2012, 337, 942-945.	12.6	282
27	Timescale Stretch Parameterization of Type Ia SupernovaBâ€Band Light Curves. Astrophysical Journal, 2001, 558, 359-368.	4.5	280
28	Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe. Nature, 2011, 480, 348-350.	27.8	274
29	<i>K</i> à€Corrections and Spectral Templates of Type Ia Supernovae. Astrophysical Journal, 2007, 663, 1187-1200.	4.5	272
30	Kâ€Corrections and Extinction Corrections for Type Ia Supernovae. Publications of the Astronomical Society of the Pacific, 2002, 114, 803-819.	3.1	263
31	Timeâ€dependent Monte Carlo Radiative Transfer Calculations for Threeâ€dimensional Supernova Spectra, Light Curves, and Polarization. Astrophysical Journal, 2006, 651, 366-380.	4.5	255
32	A COMPACT DEGENERATE PRIMARY-STAR PROGENITOR OF SN 2011fe. Astrophysical Journal Letters, 2012, 744, L17.	8.3	251
33	A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind. Nature, 2014, 509, 471-474.	27.8	250
34	PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. Astronomy and Astrophysics, 2015, 579, A40.	5.1	239
35	Nearby Supernova Factory Observations of SN 2005gj: Another Type Ia Supernova in a Massive Circumstellar Envelope. Astrophysical Journal, 2006, 650, 510-527.	4.5	222
36	Confined dense circumstellar material surrounding a regular type II supernova. Nature Physics, 2017, 13, 510-517.	16.7	221

#	Article	IF	CITATIONS
37	The Zwicky Transient Facility: Surveys and Scheduler. Publications of the Astronomical Society of the Pacific, 2019, 131, 068003.	3.1	205
38	On the relative frequencies of spectroscopically normal and peculiar type IA supernovae. Astronomical Journal, 1993, 106, 2383.	4.7	205
39	Overview of the Nearby Supernova Factory. , 2002, , .		203
40	First Cosmology Results using Type Ia Supernovae from the Dark Energy Survey: Constraints on Cosmological Parameters. Astrophysical Journal Letters, 2019, 872, L30.	8.3	201
41	Synthetic Spectra of Hydrodynamic Models of Type Ia Supernovae. Astrophysical Journal, 1997, 485, 812-819.	4.5	198
42	Dark Energy Survey Year 1 Results: A Precise H0 Estimate from DES Y1, BAO, and D/H Data. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3879-3888.	4.4	196
43	Spectropolarimetry of SN 2001el in NGC 1448: Asphericity of a Normal Type Ia Supernova. Astrophysical Journal, 2003, 591, 1110-1128.	4.5	185
44	An outburst from a massive star 40 days before a supernova explosion. Nature, 2013, 494, 65-67.	27.8	183
45	TYPE Ia SUPERNOVAE STRONGLY INTERACTING WITH THEIR CIRCUMSTELLAR MEDIUM. Astrophysical Journal, Supplement Series, 2013, 207, 3.	7.7	180
46	Spectrophotometric time series of SN 2011fe from the Nearby Supernova Factory. Astronomy and Astrophysics, 2013, 554, A27.	5.1	178
47	DISCOVERY OF PRECURSOR LUMINOUS BLUE VARIABLE OUTBURSTS IN TWO RECENT OPTICAL TRANSIENTS: THE FITFULLY VARIABLE MISSING LINKS UGC 2773-OT AND SN 2009ip. Astronomical Journal, 2010, 139, 1451-1467.	4.7	175
48	CONSTRAINING TYPE Ia SUPERNOVA MODELS: SN 2011fe AS A TEST CASE. Astrophysical Journal Letters, 2012, 750, L19.	8.3	175
49	PRECURSORS PRIOR TO TYPE IIn SUPERNOVA EXPLOSIONS ARE COMMON: PRECURSOR RATES, PROPERTIES, AND CORRELATIONS. Astrophysical Journal, 2014, 789, 104.	4.5	175
50	CALCIUM-RICH GAP TRANSIENTS IN THE REMOTE OUTSKIRTS OF GALAXIES. Astrophysical Journal, 2012, 755, 161.	4.5	174
51	Discovery of the nearby long, soft GRB \hat{a} \in 100316D with an associated supernova. Monthly Notices of the Royal Astronomical Society, 2011, 411, 2792-2803.	4.4	170
52	HOST-GALAXY PROPERTIES OF 32 LOW-REDSHIFT SUPERLUMINOUS SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY. Astrophysical Journal, 2016, 830, 13.	4.5	170
53	DISCOVERY, PROGENITOR AND EARLY EVOLUTION OF A STRIPPED ENVELOPE SUPERNOVA iPTF13bvn. Astrophysical Journal Letters, 2013, 775, L7.	8.3	169
54	iPTF16geu: A multiply imaged, gravitationally lensed type la supernova. Science, 2017, 356, 291-295.	12.6	168

#	Article	IF	CITATIONS
55	FLASH SPECTROSCOPY: EMISSION LINES FROM THE IONIZED CIRCUMSTELLAR MATERIAL AROUND & lt;10-DAY-OLD TYPE II SUPERNOVAE. Astrophysical Journal, 2016, 818, 3.	4.5	161
56	A strong ultraviolet pulse from a newborn type la supernova. Nature, 2015, 521, 328-331.	27.8	157
57	SN 2011dh: DISCOVERY OF A TYPE IIb SUPERNOVA FROM A COMPACT PROGENITOR IN THE NEARBY GALAXY M51. Astrophysical Journal Letters, 2011, 742, L18.	8.3	156
58	Metallicity Effects in Non‣TE Model Atmospheres of Type Ia Supernovae. Astrophysical Journal, 2000, 530, 966-976.	4.5	153
59	CORE-COLLAPSE SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: INDICATIONS FOR A DIFFERENT POPULATION IN DWARF GALAXIES. Astrophysical Journal, 2010, 721, 777-784.	4.5	153
60	THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION. Astrophysical Journal, Supplement Series, 2015, 221, 27.	7.7	153
61	SUPERNOVA PTF 09UJ: A POSSIBLE SHOCK BREAKOUT FROM A DENSE CIRCUMSTELLAR WIND. Astrophysical Journal, 2010, 724, 1396-1401.	4.5	152
62	SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY. Astrophysical Journal, 2012, 753, 152.	4.5	152
63	Evidence of environmental dependencies of Type Ia supernovae from the Nearby Supernova Factory indicated by local $Hi+$. Astronomy and Astrophysics, 2013, 560, A66.	5.1	151
64	SYNAPPS: Data-Driven Analysis for Supernova Spectroscopy. Publications of the Astronomical Society of the Pacific, 2011, 123, 237-248.	3.1	147
65	First cosmological results using Type la supernovae from the Dark Energy Survey: measurement of the Hubble constant. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2184-2196.	4.4	143
66	Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era. Publications of the Astronomical Society of the Pacific, 2012, 124, 1175-1196.	3.1	141
67	IMPROVED STANDARDIZATION OF TYPE II-P SUPERNOVAE: APPLICATION TO AN EXPANDED SAMPLE. Astrophysical Journal, 2009, 694, 1067-1079.	4.5	140
68	VARIABLE SODIUM ABSORPTION IN A LOW-EXTINCTION TYPE Ia SUPERNOVA,. Astrophysical Journal, 2009, 702, 1157-1170.	4.5	139
69	Hubble Space Telescope spectra of the Type Ia supernova SNÂ2011fe: a tail of low-density, high-velocity material with ZÂ<ÂZ⊙. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1959-1979.	4.4	139
70	PTF12os and iPTF13bvn. Astronomy and Astrophysics, 2016, 593, A68.	5.1	136
71	Superluminous supernovae from PESSTO. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2096-2113.	4.4	135
72	Analysis of the Flux and Polarization Spectra of the Type Ia Supernova SN 2001el: Exploring the Geometry of the Highâ€Velocity Ejecta. Astrophysical Journal, 2003, 593, 788-808.	4.5	134

#	Article	IF	CITATIONS
73	The Lyman α forest in optically thin hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2015, 446, 3697-3724.	4.4	133
74	THE EXTREME HOSTS OF EXTREME SUPERNOVAE. Astrophysical Journal, 2011, 727, 15.	4.5	132
75	Toward a Cosmological Hubble Diagram for Type IIâ€P Supernovae. Astrophysical Journal, 2006, 645, 841-850.	4.5	126
76	RAPIDLY DECAYING SUPERNOVA 2010X: A CANDIDATE ".la―EXPLOSION. Astrophysical Journal Letters, 2010 723, L98-L102.	8.3	126
77	The Palomar Transient Factory Photometric Calibration. Publications of the Astronomical Society of the Pacific, 2012, 124, 62-73.	3.1	124
78	Revisiting Optical Tidal Disruption Events with iPTF16axa. Astrophysical Journal, 2017, 842, 29.	4.5	124
79	HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY. Astrophysical Journal, 2013, 770, 108.	4.5	123
80	Observational Predictions for Sub-Chandrasekhar Mass Explosions: Further Evidence for Multiple Progenitor Systems for Type Ia Supernovae. Astrophysical Journal, 2019, 873, 84.	4.5	123
81	EARLY RADIO AND X-RAY OBSERVATIONS OF THE YOUNGEST NEARBY TYPE Ia SUPERNOVA PTF 11kly (SN) Tj ETQ	q1,1 0.78·	4314 rgBT 118
82	An Unusually Fast-Evolving Supernova. Science, 2010, 327, 58-60.	12.6	116
83	The bolometric light curves and physical parameters of stripped-envelope supernovae. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2973-3002.	4.4	115
84	The Hubble diagram of type la supernovae as a function of host galaxy morphology. Monthly Notices of the Royal Astronomical Society, 2003, 340, 1057-1075.	4.4	112
85	Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra. Astrophysical Journal, 2008, 674, 51-69.	4.5	112
86	Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star. Nature, 2017, 551, 210-213.	27.8	112
87	PTF11iqb: cool supergiant mass-loss that bridges the gap between TypeÂlIn and normal supernovae. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1876-1896.	4.4	111
88	iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy. Astrophysical Journal, 2017, 844, 46.	4.5	111
89	The reddening law of type la supernovae: separating intrinsic variability from dust using equivalent widths. Astronomy and Astrophysics, 2011, 529, L4.	5.1	110
90	SN 2010jl: OPTICAL TO HARD X-RAY OBSERVATIONS REVEAL AN EXPLOSION EMBEDDED IN A TEN SOLAR MASS COCOON. Astrophysical Journal, 2014, 781, 42.	4.5	110

#	Article	IF	Citations
91	DISCOVERY OF AN UNUSUAL OPTICAL TRANSIENT WITH THE <i>HUBBLE SPACE TELESCOPE </i> Astrophysical Journal, 2009, 690, 1358-1362.	4.5	109
92	DETECTION OF BROAD Hα EMISSION LINES IN THE LATE-TIME SPECTRA OF A HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA. Astrophysical Journal, 2015, 814, 108.	4. 5	107
93	AUTOMATED TRANSIENT IDENTIFICATION IN THE DARK ENERGY SURVEY. Astronomical Journal, 2015, 150, 82.	4.7	107
94	Type Ia supernova bolometric light curves and ejected mass estimates from the Nearby Supernova Factory. Monthly Notices of the Royal Astronomical Society, 2014, 440, 1498-1518.	4.4	105
95	THE RISE OF SN 2014J IN THE NEARBY GALAXY M82. Astrophysical Journal Letters, 2014, 784, L12.	8.3	104
96	Type IIP Supernovae as Cosmological Probes: A Spectral-fitting Expanding Atmosphere Model Distance to SN 1999em. Astrophysical Journal, 2004, 616, L91-L94.	4. 5	101
97	The rising light curves of Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2015, 446, 3895-3910.	4.4	101
98	A statistical analysis of circumstellar material in Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2013, 436, 222-240.	4.4	100
99	Spectroscopic Observations and Analysis of the Peculiar SN 1999aa. Astronomical Journal, 2004, 128, 387-404.	4.7	99
100	Spectra of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory. Astrophysical Journal, 2018, 855, 2.	4.5	98
101	THE PTF ORION PROJECT: A POSSIBLE PLANET TRANSITING A T-TAURI STAR. Astrophysical Journal, 2012, 755, 42.	4.5	97
102	iPTF Discovery of the Rapid "Turn-on―of a Luminous Quasar. Astrophysical Journal, 2017, 835, 144.	4.5	97
103	The Distant Type Ia Supernova Rate. Astrophysical Journal, 2002, 577, 120-132.	4.5	94
104	THE PECULIAR EXTINCTION LAW OF SN 2014J MEASURED WITH THE <code><i>i>HUBBLE</i></code> SPACE TELESCOPE $<$ $ $ i>. Astrophysical Journal Letters, 2014, 788, L21.	8.3	94
105	The host galaxies of Type Ia supernovae discovered by the Palomar Transient Factory. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1391-1416.	4.4	93
106	THE HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA iPTF 13ajg AND ITS HOST GALAXY IN ABSORPTION AND EMISSION. Astrophysical Journal, 2014, 797, 24.	4.5	92
107	First Cosmology Results Using SNe Ia from the Dark Energy Survey: Analysis, Systematic Uncertainties, and Validation. Astrophysical Journal, 2019, 874, 150.	4.5	92
108	<i>Hubble Space Telescope</i> studies of low-redshift Type Ia supernovae: evolution with redshift and ultraviolet spectral trends. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2359-2379.	4.4	91

#	Article	IF	Citations
109	Hydrogen-poor Superluminous Supernovae with Late-time Hα Emission: Three Events From the Intermediate Palomar Transient Factory. Astrophysical Journal, 2017, 848, 6.	4.5	91
110	Highâ€Redshift Supernovae in the Hubble Deep Field. Astrophysical Journal, 1999, 521, 30-49.	4.5	87
111	Photometric Selection of High-Redshift Type Ia Supernova Candidates. Astronomical Journal, 2006, 131, 960-972.	4.7	84
112	A hot and fast ultra-stripped supernova that likely formed a compact neutron star binary. Science, 2018, 362, 201-206.	12.6	84
113	XRF 100316D/SN 2010bh AND THE NATURE OF GAMMA-RAY BURST SUPERNOVAE. Astrophysical Journal, 2011, 740, 41.	4.5	83
114	THE VERY YOUNG TYPE Ia SUPERNOVA 2013dy: DISCOVERY, AND STRONG CARBON ABSORPTION IN EARLY-TIME SPECTRA. Astrophysical Journal Letters, 2013, 778, L15.	8.3	82
115	Non-local thermodynamic equilibrium effects in modelling of Supernovae near maximum light. Monthly Notices of the Royal Astronomical Society, 1996, 283, 297-315.	4.4	81
116	REAL-TIME DETECTION AND RAPID MULTIWAVELENGTH FOLLOW-UP OBSERVATIONS OF A HIGHLY SUBLUMINOUS TYPE II-P SUPERNOVA FROM THE PALOMAR TRANSIENT FACTORY SURVEY. Astrophysical Journal, 2011, 736, 159.	4.5	81
117	COMMON ENVELOPE EJECTION FOR A LUMINOUS RED NOVA IN M101. Astrophysical Journal, 2017, 834, 107.	4.5	81
118	First Data Release of the COSMOS Lyl± Mapping and Tomography Observations: 3D Lyl± Forest Tomography at 2.05Â<ÂzÂ<Â2.55. Astrophysical Journal, Supplement Series, 2018, 237, 31.	7.7	80
119	K2 Observations of SN 2018oh Reveal a Two-component Rising Light Curve for a Type Ia Supernova. Astrophysical Journal Letters, 2019, 870, L1.	8.3	80
120	Evidence for a High-Velocity Carbon-rich Layer in the Type I[CLC]a[/CLC] SN 1990N. Astrophysical Journal, 1997, 481, L89-L92.	4.5	79
121	Optical and Infrared Photometry of the Nearby Type Ia Supernovae 1999ee, 2000bh, 2000ca, and 2001ba. Astronomical Journal, 2004, 127, 1664-1681.	4.7	79
122	EVIDENCE FOR AN FU ORIONIS-LIKE OUTBURST FROM A CLASSICAL T TAURI STAR. Astrophysical Journal, 2011, 730, 80.	4.5	79
123	BROAD-LINE REVERBERATION IN THE <i>KEPLER </i> Journal, 2011, 732, 121.	4.5	78
124	TYPE Ia SUPERNOVA CARBON FOOTPRINTS. Astrophysical Journal, 2011, 743, 27.	4.5	78
125	PTF10iya: a short-lived, luminous flare from the nuclear region of a star-forming galaxy. Monthly Notices of the Royal Astronomical Society, 2012, 420, 2684-2699.	4.4	78
126	Diversity in extinction laws of Type Ia supernovae measured between 0.2 and 2 î¼m. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3301-3329.	4.4	78

#	Article	IF	CITATIONS
127	DES14X3taz: A TYPE I SUPERLUMINOUS SUPERNOVA SHOWING A LUMINOUS, RAPIDLY COOLING INITIAL PRE-PEAK BUMP. Astrophysical Journal Letters, 2016, 818, L8.	8.3	78
128	The La Silla-QUEST Low Redshift Supernova Survey. Publications of the Astronomical Society of the Pacific, 2013, 125, 683-694.	3.1	77
129	ZTF Early Observations of Type Ia Supernovae. I. Properties of the 2018 Sample. Astrophysical Journal, 2019, 886, 152.	4.5	77
130	The Type I[CLC]a[/CLC] Supernova 1999[CLC]aw[/CLC]: A Probable 1999[CLC]aa[/CLC]-like Event in a Low-Luminosity Host Galaxy. Astronomical Journal, 2002, 124, 2905-2919.	4.7	76
131	A MULTI-WAVELENGTH INVESTIGATION OF THE RADIO-LOUD SUPERNOVA PTF11qcj AND ITS CIRCUMSTELLAR ENVIRONMENT. Astrophysical Journal, 2014, 782, 42.	4.5	76
132	ANALYSIS OF THE EARLY-TIME OPTICAL SPECTRA OF SN 2011fe IN M101. Astrophysical Journal Letters, 2012, 752, L26.	8.3	75
133	Exploring the spectral diversity of low-redshift Type Ia supernovae using the Palomar Transient Factory. Monthly Notices of the Royal Astronomical Society, 2014, 444, 3258-3274.	4.4	7 5
134	TYPE II SUPERNOVA ENERGETICS AND COMPARISON OF LIGHT CURVES TO SHOCK-COOLING MODELS. Astrophysical Journal, 2016, 820, 33.	4.5	75
135	GROWTH on S190814bv: Deep Synoptic Limits on the Optical/Near-infrared Counterpart to a Neutron Star–Black Hole Merger. Astrophysical Journal, 2020, 890, 131.	4.5	74
136	A tale of two GRB-SNe at a common redshift of z =0.54. Monthly Notices of the Royal Astronomical Society, 2011, 413, 669-685.	4.4	72
137	THE FACTORY AND THE BEEHIVE. I. ROTATION PERIODS FOR LOW-MASS STARS IN PRAESEPE. Astrophysical Journal, 2011, 740, 110.	4.5	71
138	DISCOVERY OF A COSMOLOGICAL, RELATIVISTIC OUTBURST VIA ITS RAPIDLY FADING OPTICAL EMISSION. Astrophysical Journal, $2013, 769, 130$.	4.5	71
139	LYα FOREST TOMOGRAPHY FROM BACKGROUND GALAXIES: THE FIRST MEGAPARSEC-RESOLUTION LARGE-SCALE STRUCTURE MAP AT <i>z</i> > 2. Astrophysical Journal Letters, 2014, 795, L12.	8.3	70
140	A Mildly Relativistic Outflow from the Energetic, Fast-rising Blue Optical Transient CSS161010 in a Dwarf Galaxy. Astrophysical Journal Letters, 2020, 895, L23.	8.3	70
141	The Broad Absorption Line Tidal Disruption Event iPTF15af: Optical and Ultraviolet Evolution. Astrophysical Journal, 2019, 873, 92.	4.5	69
142	THE EARLIEST NEAR-INFRARED TIME-SERIES SPECTROSCOPY OF A TYPE Ia SUPERNOVA. Astrophysical Journal, 2013, 766, 72.	4.5	68
143	Strong near-infrared carbon in the Type Ia supernova iPTF13ebh. Astronomy and Astrophysics, 2015, 578, A9.	5.1	68
144	SLOW-SPEED SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: TWO CHANNELS. Astrophysical Journal, 2015, 799, 52.	4.5	68

#	Article	IF	CITATIONS
145	Superluminous supernovae from the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2215-2241.	4.4	67
146	A SEARCH FOR NEW CANDIDATE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVAE IN THE NEARBY SUPERNOVA FACTORY DATA SET. Astrophysical Journal, 2012, 757, 12.	4.5	64
147	Near-infrared observations of Type Ia supernovae: the best known standard candle for cosmology. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1007-1012.	4.4	64
148	An early and comprehensive millimetre and centimetre wave and X-ray study of SN 2011dh: a non-equipartition blast wave expanding into a massive stellar wind. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1258-1267.	4.4	64
149	The Palomar Transient Factory photometric catalog 1.0. Publications of the Astronomical Society of the Pacific, 2012, 124, 854-860.	3.1	63
150	HOST GALAXIES OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY. Astrophysical Journal, 2013, 770, 107.	4.5	63
151	SHADOW OF A COLOSSUS: A $z=2.44$ GALAXY PROTOCLUSTER DETECTED IN 3D Lyα FOREST TOMOGRAPHIC MAPPING OF THE COSMOS FIELD. Astrophysical Journal, 2016, 817, 160.	4.5	63
152	First cosmology results using type Ia supernovae from the Dark Energy Survey: the effect of host galaxy properties on supernova luminosity. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4426-4447.	4.4	63
153	Nickel-rich outflows produced by the accretion-induced collapse of white dwarfs: light curves and spectra. Monthly Notices of the Royal Astronomical Society, 2010, 409, 846-854.	4.4	62
154	INTERACTION-POWERED SUPERNOVAE: RISE-TIME VERSUS PEAK-LUMINOSITY CORRELATION AND THE SHOCK-BREAKOUT VELOCITY. Astrophysical Journal, 2014, 788, 154.	4.5	62
155	First cosmology results using Type Ia supernova from the Dark Energy Survey: simulations to correct supernova distance biases. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1171-1187.	4.4	62
156	Could There Be a Hole in Type Ia Supernovae?. Astrophysical Journal, 2004, 610, 876-887.	4.5	61
157	THE SUBLUMINOUS AND PECULIAR TYPE Ia SUPERNOVA PTF 09dav. Astrophysical Journal, 2011, 732, 118.	4.5	61
158	X-RAY EMISSION FROM SUPERNOVAE IN DENSE CIRCUMSTELLAR MATTER ENVIRONMENTS: A SEARCH FOR COLLISIONLESS SHOCKS. Astrophysical Journal, 2013, 763, 42.	4.5	61
159	ON THE EARLY-TIME EXCESS EMISSION IN HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE. Astrophysical Journal, 2017, 835, 58.	4.5	61
160	GRB 020410: A Gammaâ€Ray Burst Afterglow Discovered by Its Supernova Light. Astrophysical Journal, 2005, 624, 880-888.	4.5	60
161	Peculiar Type II supernovae from blue supergiants. Monthly Notices of the Royal Astronomical Society, 2011, 415, 372-382.	4.4	60
162	Two New Calcium-rich Gap Transients in Group and Cluster Environments. Astrophysical Journal, 2017, 836, 60.	4.5	60

#	Article	IF	CITATIONS
163	Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images. Astrophysical Journal, 2018, 855, 22.	4.5	60
164	How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?. Astrophysical Journal Letters, 2018, 852, L3.	8.3	60
165	First Cosmology Results Using Type Ia Supernovae from the Dark Energy Survey: Photometric Pipeline and Light-curve Data Release. Astrophysical Journal, 2019, 874, 106.	4.5	60
166	Analysis of broad-lined Type Ic supernovae from the (intermediate) Palomar Transient Factory. Astronomy and Astrophysics, 2019, 621, A71.	5.1	59
167	Bright, Months-long Stellar Outbursts Announce the Explosion of Interaction-powered Supernovae. Astrophysical Journal, 2021, 907, 99.	4.5	59
168	Measurement of $\hat{l}\otimes m$, $\hat{l}\otimes \hat{l}\otimes m$ a Blind Analysis of Type Ia Supernovae with CMAGIC: Using Color Information to Verify the Acceleration of the Universe. Astrophysical Journal, 2006, 644, 1-20.	4.5	57
169	iPTF 16asu: A Luminous, Rapidly Evolving, and High-velocity Supernova. Astrophysical Journal, 2017, 851, 107.	4.5	57
170	ZTF 18aaqeasu (SN2018byg): A Massive Helium-shell Double Detonation on a Sub-Chandrasekhar-mass White Dwarf. Astrophysical Journal Letters, 2019, 873, L18.	8.3	56
171	Carnegie Supernova Project-II: Extending the Near-infrared Hubble Diagram for Type Ia Supernovae to $\langle i \rangle z \langle i \rangle$ â° 1/4 0.1. Publications of the Astronomical Society of the Pacific, 2019, 131, 014001.	3.1	56
172	The Palomar Transient Factory Core-collapse Supernova Host-galaxy Sample. I. Host-galaxy Distribution Functions and Environment Dependence of Core-collapse Supernovae. Astrophysical Journal, Supplement Series, 2021, 255, 29.	7.7	56
173	PTF 10fqs: A LUMINOUS RED NOVA IN THE SPIRAL GALAXY MESSIER 99. Astrophysical Journal, 2011, 730, 134.	4.5	55
174	PTF10nvg: AN OUTBURSTING CLASS I PROTOSTAR IN THE PELICAN/NORTH AMERICAN NEBULA. Astronomical Journal, 2011, 141, 40.	4.7	55
175	Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova: Pre-explosion Emission and a Rapidly Rising Luminous Transient. Astrophysical Journal, 2019, 887, 169.	4.5	55
176	Carnegie Supernova Project-II: The Near-infrared Spectroscopy Program. Publications of the Astronomical Society of the Pacific, 2019, 131, 014002.	3.1	55
177	The Magnification of SN 1997[CLC]ff[/CLC], the Farthest Known Supernova. Astrophysical Journal, 2002, 577, L1-L4.	4.5	54
178	SN 2010MB: DIRECT EVIDENCE FOR A SUPERNOVA INTERACTING WITH A LARGE AMOUNT OF HYDROGEN-FREE CIRCUMSTELLAR MATERIAL. Astrophysical Journal, 2014, 785, 37.	4.5	54
179	HOW TO FIND GRAVITATIONALLY LENSED TYPE Ia SUPERNOVAE. Astrophysical Journal Letters, 2017, 834, L5.	8.3	54
180	Infrared and Optical Observations of GRB 030115 and its Extremely Red Host Galaxy: Implications for Dark Bursts. Astrophysical Journal, 2006, 647, 471-482.	4.5	53

#	Article	lF	Citations
181	DES13S2cmm: the first superluminous supernova from the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1215-1227.	4.4	53
182	DISCOVERY AND REDSHIFT OF AN OPTICAL AFTERGLOW IN 71 deg ² : iPTF13bxl AND GRB 130702A. Astrophysical Journal Letters, 2013, 776, L34.	8.3	52
183	SN 2010jp (PTF10aaxi): a jet in a Type II supernova. Monthly Notices of the Royal Astronomical Society, 2012, 420, 1135-1144.	4.4	51
184	â€~Super-Chandrasekhar' Type la Supernovae at nebular epochsã~ Monthly Notices of the Royal Astronomical Society, 2013, 432, 3117-3130.	4.4	51
185	AN ACCRETING WHITE DWARF NEAR THE CHANDRASEKHAR LIMIT IN THE ANDROMEDA GALAXY. Astrophysical Journal, 2014, 786, 61.	4.5	51
186	PTF1 J071912.13+485834.0: AN OUTBURSTING AM CVn SYSTEM DISCOVERED BY A SYNOPTIC SURVEY. Astrophysical Journal, 2011, 739, 68.	4.5	50
187	iPTF14yb: THE FIRST DISCOVERY OF A GAMMA-RAY BURST AFTERGLOW INDEPENDENT OF A HIGH-ENERGY TRIGGER. Astrophysical Journal Letters, 2015, 803, L24.	8.3	50
188	Interacting supernovae and supernova impostors. LSQ13zm: an outburst heralds the death of a massive star. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1039-1059.	4.4	50
189	The Rise Times of High- and Low-Redshift Type I[CLC]a[/CLC] Supernovae Are Consistent. Astronomical Journal, 2000, 119, 2110-2117.	4.7	50
190	Spectra of High-Redshift Type Ia Supernovae and a Comparison with Their Low-Redshift Counterparts. Astronomical Journal, 2005, 130, 2788-2803.	4.7	49
191	Nearby Supernova Factory Observations of SN 2006D: On Sporadic Carbon Signatures in Early Type Ia Supernova Spectra. Astrophysical Journal, 2007, 654, L53-L56.	4.5	49
192	EVIDENCE FOR TYPE Ia SUPERNOVA DIVERSITY FROM ULTRAVIOLET OBSERVATIONS WITH THE <i>HUBBLE SPACE TELESCOPE</i> . Astrophysical Journal, 2012, 749, 126.	4.5	49
193	Intermediate Palomar Transient Factory: Realtime Image Subtraction Pipeline. Publications of the Astronomical Society of the Pacific, 2016, 128, 114502.	3.1	49
194	Early Observations of the Type Ia Supernova iPTF 16abc: A Case of Interaction with Nearby, Unbound Material and/or Strong Ejecta Mixing. Astrophysical Journal, 2018, 852, 100.	4.5	49
195	Quantitative comparison between type la supernova spectra at low and high redshifts: a case study. Astronomy and Astrophysics, 2007, 470, 411-424.	5.1	49
196	The UV/optical spectra of the Type Ia supernova SN 2010jn: a bright supernova with outer layers rich in iron-group elements. Monthly Notices of the Royal Astronomical Society, 2013, 429, 2228-2248.	4.4	48
197	The DES Bright Arcs Survey: Hundreds of Candidate Strongly Lensed Galaxy Systems from the Dark Energy Survey Science Verification and Year 1 Observations. Astrophysical Journal, Supplement Series, 2017, 232, 15.	7.7	48
198	SN 2012fr: Ultraviolet, Optical, and Near-infrared Light Curves of a Type Ia Supernova Observed within a Day of Explosion*. Astrophysical Journal, 2018, 859, 24.	4.5	48

#	Article	IF	CITATIONS
199	Detailed Spectroscopic Analysis of SN 1987A: The Distance to the Large Magellanic Cloud Using the Spectralâ€fitting Expanding Atmosphere Method. Astrophysical Journal, 2002, 574, 293-305.	4.5	47
200	LOOKING BEYOND LAMBDA WITH THE UNION SUPERNOVA COMPILATION. Astrophysical Journal, 2009, 695, 391-403.	4.5	46
201	CLASSICAL NOVAE IN ANDROMEDA: LIGHT CURVES FROM THE PALOMAR TRANSIENT FACTORY AND <i> GALEX </i> /i > . Astrophysical Journal, 2012, 752, 133.	4.5	46
202	iPTF SEARCH FOR AN OPTICAL COUNTERPART TO GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 824, L24.	8.3	46
203	The Dark Energy Survey and operations: Year 1. Proceedings of SPIE, 2014, , .	0.8	45
204	Constraining the progenitor companion of the nearby Type Ia SNÂ2011fe with a nebular spectrum at +981 d. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1948-1957.	4.4	45
205	Snapshot Distances to Type Ia Supernovae: All in "One―Night's Work. Astrophysical Journal, 1998, 504, 935-944.	4.5	45
206	PTF10ops - a subluminous, normal-width light curve Type Ia supernova in the middle of nowhere. Monthly Notices of the Royal Astronomical Society, 2011, 418, 747-758.	4.4	43
207	THE NEEDLE IN THE 100 deg ² HAYSTACK: UNCOVERING AFTERGLOWS OF <i>FERMI</i> GRBs WITH THE PALOMAR TRANSIENT FACTORY. Astrophysical Journal, 2015, 806, 52.	4.5	43
208	DISCOVERY AND EARLY MULTI-WAVELENGTH MEASUREMENTS OF THE ENERGETIC TYPE IC SUPERNOVA PTF12GZK: A MASSIVE-STAR EXPLOSION IN A DWARF HOST GALAXY. Astrophysical Journal Letters, 2012, 760, L33.	8.3	42
209	RADIO OBSERVATIONS OF A SAMPLE OF BROAD-LINE TYPE IC SUPERNOVAE DISCOVERED BY PTF/IPTF: A SEARCH FOR RELATIVISTIC EXPLOSIONS. Astrophysical Journal, 2016, 830, 42.	4.5	42
210	The late-time light curve of the Type Ia supernova SN 2011fe. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3798-3812.	4.4	42
211	THREE NEW ECLIPSING WHITE-DWARF-M-DWARF BINARIES DISCOVERED IN A SEARCH FOR TRANSITING PLANETS AROUND M-DWARFS. Astrophysical Journal, 2012, 757, 133.	4.5	41
212	The bumpy light curve of Type IIn supernova iPTF13z over 3 years. Astronomy and Astrophysics, 2017, 605, A6.	5.1	41
213	Rates and Properties of Supernovae Strongly Gravitationally Lensed by Elliptical Galaxies in Time-domain Imaging Surveys. Astrophysical Journal, Supplement Series, 2019, 243, 6.	7.7	41
214	Cosmological Model Parameter Determination from Satelliteâ€acquired Supernova Apparent Magnitude versus Redshift Data. Astrophysical Journal, 2001, 553, 39-46.	4.5	41
215	LATE-TIME SPECTRAL OBSERVATIONS OF THE STRONGLY INTERACTING TYPE Ia SUPERNOVA PTF11kx. Astrophysical Journal, 2013, 772, 125.	4.5	40
216	STANDARDIZING TYPE Ia SUPERNOVA ABSOLUTE MAGNITUDES USING GAUSSIAN PROCESS DATA REGRESSION. Astrophysical Journal, 2013, 766, 84.	4.5	40

#	Article	IF	CITATIONS
217	SEARCHING FOR PLANET NINE WITH COADDED WISE AND NEOWISE-REACTIVATION IMAGES. Astronomical Journal, 2017, 153, 65.	4.7	40
218	Cosmological parameters from lensed supernovae. Astronomy and Astrophysics, 2002, 393, 25-32.	5.1	40
219	Spectroscopic Observations and Analysis of the Unusual Type Ia SN 1999ac. Astronomical Journal, 2005, 130, 2278-2292.	4.7	39
220	PTF13efv—AN OUTBURST 500 DAYS PRIOR TO THE SNHUNT 275 EXPLOSION AND ITS RADIATIVE EFFICIENCY. Astrophysical Journal, 2016, 824, 6.	4.5	39
221	A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova. Nature Astronomy, 2018, 2, 887-895.	10.1	39
222	GROWTH on S190426c: Real-time Search for a Counterpart to the Probable Neutron Star–Black Hole Merger using an Automated Difference Imaging Pipeline for DECam. Astrophysical Journal Letters, 2019, 881, L7.	8.3	39
223	On the Afterglow and Host Galaxy of GRB 021004: A Comprehensive Study with theHubble Space Telescope. Astrophysical Journal, 2005, 633, 317-327.	4.5	38
224	TYPE II-P SUPERNOVAE AS STANDARD CANDLES: THE SDSS-II SAMPLE REVISITED. Astrophysical Journal, 2010, 721, 956-959.	4.5	38
225	UNVEILING THE ORIGIN OF GRB 090709A: LACK OF PERIODICITY IN A REDDENED COSMOLOGICAL LONG-DURATION GAMMA-RAY BURST. Astronomical Journal, 2010, 140, 224-234.	4.7	37
226	THE PALOMAR TRANSIENT FACTORY ORION PROJECT: ECLIPSING BINARIES AND YOUNG STELLAR OBJECTS. Astronomical Journal, 2011, 142, 60.	4.7	36
227	EVIDENCE FOR A COMPACT WOLF-RAYET PROGENITOR FOR THE TYPE Ic SUPERNOVA PTF 10vgv. Astrophysical Journal Letters, 2012, 747, L5.	8.3	36
228	Delayed Circumstellar Interaction for Type Ia SN 2015cp Revealed by an HST Ultraviolet Imaging Survey. Astrophysical Journal, 2019, 871, 62.	4.5	36
229	THE MEAN TYPE IA SUPERNOVA SPECTRUM OVER THE PAST NINE GIGAYEARS. Astrophysical Journal, 2009, 693, L76-L80.	4.5	35
230	Type Ia supernova spectral features in the context of their host galaxy properties. Monthly Notices of the Royal Astronomical Society, 2015, 446, 354-368.	4.4	35
231	THE DETECTION RATE OF EARLY UV EMISSION FROM SUPERNOVAE: A DEDICATED GALEX/PTF SURVEY AND CALIBRATED THEORETICAL ESTIMATES. Astrophysical Journal, 2016, 820, 57.	4.5	35
232	ZTF Early Observations of Type Ia Supernovae. II. First Light, the Initial Rise, and Time to Reach Maximum Brightness. Astrophysical Journal, 2020, 902, 47.	4.5	35
233	A strategy for finding gravitationally lensed distant supernovae. Monthly Notices of the Royal Astronomical Society, 2000, 319, 549-556.	4.4	33
234	PTF 10bzf (SN 2010ah): A BROAD-LINE Ic SUPERNOVA DISCOVERED BY THE PALOMAR TRANSIENT FACTORY. Astrophysical Journal, 2011, 741, 76.	4.5	33

#	Article	IF	CITATIONS
235	Asteroid rotation periods from the Palomar Transient Factory survey. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2094-2108.	4.4	32
236	The Spectacular Ultraviolet Flash from the Peculiar Type Ia Supernova 2019yvq. Astrophysical Journal, 2020, 898, 56.	4.5	32
237	Low Hubble Constant from the Physics of Type Ia Supernovae. Physical Review Letters, 1995, 75, 394-397.	7.8	31
238	<i>HUBBLE SPACE TELESCOPE</i> STUDIES OF NEARBY TYPE Ia SUPERNOVAE: THE MEAN MAXIMUM LIGHT ULTRAVIOLET SPECTRUM AND ITS DISPERSION. Astrophysical Journal Letters, 2011, 727, L35.	8.3	31
239	iPTF 16hgs: A Double-peaked Ca-rich Gap Transient in a Metal-poor, Star-forming Dwarf Galaxy. Astrophysical Journal, 2018, 866, 72.	4.5	31
240	Detection of zÂâ ¹ /4Â2.3 Cosmic Voids from 3D Lyα Forest Tomography in the COSMOS Field. Astrophysical Journal, 2018, 861, 60.	4.5	31
241	Discovery of a TransientUâ€Band Dropout in a Lyman Break Survey: A Tidally Disrupted Star atz = 3.3?. Astrophysical Journal, 2004, 612, 690-697.	4.5	30
242	iPTF13beo: the double-peaked light curve of a Type Ibn supernova discovered shortly after explosion. Monthly Notices of the Royal Astronomical Society, 2014, 443, 671-677.	4.4	30
243	Sifting for Sapphires: Systematic Selection of Tidal Disruption Events in iPTF. Astrophysical Journal, Supplement Series, 2018, 238, 15.	7.7	30
244	The Volumetric Rate of Calcium-rich Transients in the Local Universe. Astrophysical Journal, 2018, 858, 50.	4.5	30
245	GROWTH on S190510g: DECam Observation Planning and Follow-up of a Distant Binary Neutron Star Merger Candidate. Astrophysical Journal Letters, 2019, 881, L16.	8.3	30
246	The volumetric rate of normal type la supernovae in the local Universe discovered by the Palomar Transient Factory. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2308-2320.	4.4	30
247	From core collapse to superluminous: the rates of massive stellar explosions from the Palomar Transient Factory. Monthly Notices of the Royal Astronomical Society, 2020, 500, 5142-5158.	4.4	30
248	THE MOST SLOWLY DECLINING TYPE la SUPERNOVA 2001ay. Astronomical Journal, 2011, 142, 74.	4.7	29
249	Massive stars exploding in a He-rich circumstellar medium – VI. Observations of two distant Type Ibn supernova candidates discovered by La Silla-QUEST. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1954-1966.	4.4	29
250	Spectrum synthesis of the Type IA supernovae SN 1992A and SN 1981B. Astrophysical Journal, 1995, 441, L33.	4.5	29
251	A Definitive Measurement of Time Dilation in the Spectral Evolution of the Moderate-Redshift Type Ia Supernova 1997ex. Astrophysical Journal, 2005, 626, L11-L14.	4.5	28
252	KECK OBSERVATIONS OF THE YOUNG METAL-POOR HOST GALAXY OF THE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVA SN 2007if. Astrophysical Journal, 2011, 733, 3.	4.5	28

#	Article	IF	CITATIONS
253	Color Me Intrigued: The Discovery of iPTF 16fnm, an SN 2002cx–like Object. Astrophysical Journal, 2017, 848, 59.	4.5	28
254	First Cosmology Results using Supernovae Ia from the Dark Energy Survey: Survey Overview, Performance, and Supernova Spectroscopy. Astronomical Journal, 2020, 160, 267.	4.7	27
255	The Palomar Transient Factory Survey Camera: first year performance and results. Proceedings of SPIE, 2010, , .	0.8	26
256	SEARCH FOR PRECURSOR ERUPTIONS AMONG TYPE IIB SUPERNOVAE. Astrophysical Journal, 2015, 811, 117.	4.5	26
257	SEARCH FOR EARLY GAMMA-RAY PRODUCTION IN SUPERNOVAE LOCATED IN A DENSE CIRCUMSTELLAR MEDIUM WITH THE <i>FERMI < /i>LAT. Astrophysical Journal, 2015, 807, 169.</i>	4.5	26
258	Oxygen and helium in stripped-envelope supernovae. Astronomy and Astrophysics, 2018, 618, A37.	5.1	26
259	ZTF Early Observations of Type Ia Supernovae. III. Early-time Colors As a Test for Explosion Models and Multiple Populations. Astrophysical Journal, 2020, 902, 48.	4.5	26
260	SDWFS-MT-1: A SELF-OBSCURED LUMINOUS SUPERNOVA AT <i>>z</i>) â% f 0.2. Astrophysical Journal, 2010, 722, 1624-1632.	4.5	25
261	Nebular Models of Sub-Chandrasekhar Mass Type Ia Supernovae: Clues to the Origin of Ca-rich Transients. Astrophysical Journal, 2021, 906, 65.	4.5	25
262	Cosmological Results from the RAISIN Survey: Using Type Ia Supernovae in the Near Infrared as a Novel Path to Measure the Dark Energy Equation of State. Astrophysical Journal, 2022, 933, 172.	4.5	25
263	Five new outbursting AM CVn systems discovered by the Palomar Transient Factory. Monthly Notices of the Royal Astronomical Society, 2013, 430, 996-1007.	4.4	24
264	Carnegie Supernova Project II: The Slowest Rising Type Ia Supernova LSQ14fmg and Clues to the Origin of Super-Chandrasekhar/03fg-like Events*. Astrophysical Journal, 2020, 900, 140.	4.5	24
265	Near-infrared Supernova Ia Distances: Host Galaxy Extinction and Mass-step Corrections Revisited. Astrophysical Journal, 2021, 923, 237.	4.5	24
266	Weak lensing from space I: instrumentation and survey strategy. Astroparticle Physics, 2004, 20, 377-389.	4.3	23
267	Early ultraviolet emission in the Type Ia supernova LSQ12gdj: No evidence for ongoing shock interaction. Monthly Notices of the Royal Astronomical Society, 2014, 445, 30-48.	4.4	23
268	AGAINST THE WIND: RADIO LIGHT CURVES OF TYPE IA SUPERNOVAE INTERACTING WITH LOW-DENSITY CIRCUMSTELLAR SHELLS. Astrophysical Journal, 2016, 823, 100.	4.5	23
269	The dark energy survey and operations: years 1 to 3. Proceedings of SPIE, 2016, , .	0.8	23
270	Studying the Ultraviolet Spectrum of the First Spectroscopically Confirmed Supernova at Redshift Two. Astrophysical Journal, 2018, 854, 37.	4.5	23

#	Article	IF	Citations
271	iPTF Archival Search for Fast Optical Transients. Astrophysical Journal Letters, 2018, 854, L13.	8.3	23
272	SN2002es-LIKE SUPERNOVAE FROM DIFFERENT VIEWING ANGLES. Astrophysical Journal, 2016, 832, 86.	4.5	23
273	FIRST RESULTS FROM THE La Silla-QUEST SUPERNOVA SURVEY AND THE CARNEGIE SUPERNOVA PROJECT. Astrophysical Journal, Supplement Series, 2015, 219, 13.	7.7	22
274	Real-time Recovery Efficiencies and Performance of the Palomar Transient Factory's Transient Discovery Pipeline. Astrophysical Journal, Supplement Series, 2017, 230, 4.	7.7	22
275	Optical follow-up observations of PTF10qts, a luminous broad-lined TypeÂlc supernova found by the Palomar Transient Factory. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2768-2779.	4.4	21
276	RADIO FOLLOW-UP OF GRAVITATIONAL-WAVE TRIGGERS DURING ADVANCED LIGO O1. Astrophysical Journal Letters, 2016, 829, L28.	8.3	21
277	Supernova PTF 12glz: A Possible Shock Breakout Driven through an Aspherical Wind. Astrophysical Journal, 2019, 872, 141.	4.5	20
278	Progenitor, precursor, and evolution of the dusty remnant of the stellar merger M31-LRN-2015. Monthly Notices of the Royal Astronomical Society, 2020, 496, 5503-5517.	4.4	20
279	The Zwicky Transient Facility Type Ia supernova survey: first data release and results. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2228-2241.	4.4	20
280	AGNs on the Move: A Search for Off-nuclear AGNs from Recoiling Supermassive Black Holes and Ongoing Galaxy Mergers with the Zwicky Transient Facility. Astrophysical Journal, 2021, 913, 102.	4.5	19
281	On van den Bergh's Method for Measuring the Hubble Constant from Type Ia Supernovae. Astrophysical Journal, 1996, 470, L7-L9.	4.5	18
282	ABSENCE OF FAST-MOVING IRON IN AN INTERMEDIATE TYPE Ia SUPERNOVA BETWEEN NORMAL AND SUPER-CHANDRASEKHAR. Astrophysical Journal, 2016, 823, 147.	4.5	18
283	PTF11kx: A Type Ia Supernova with Hydrogen Emission Persisting after 3.5 Years. Astrophysical Journal, 2017, 843, 102.	4.5	18
284	SN 2018fif: The Explosion of a Large Red Supergiant Discovered in Its Infancy by the Zwicky Transient Facility. Astrophysical Journal, 2020, 902, 6.	4.5	18
285	Carnegie Supernova Project: The First Homogeneous Sample of Super-Chandrasekhar-mass/2003fg-like Type la Supernovae. Astrophysical Journal, 2021, 922, 205.	4.5	18
286	Towards a realâ€time transient classification engine. Astronomische Nachrichten, 2008, 329, 284-287.	1.2	17
287	SNÂ2000cx and SNÂ2013bh: extremely rare, nearly twin Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1225-1237.	4.4	17
288	Infant-phase reddening by surface Fe-peak elements in a normal type Ia supernova. Nature Astronomy, 2022, 6, 568-576.	10.1	17

#	Article	IF	CITATIONS
289	MILLIONS OF MULTIPLES: DETECTING AND CHARACTERIZING CLOSE-SEPARATION BINARY SYSTEMS IN SYNOPTIC SKY SURVEYS. Astrophysical Journal, Supplement Series, 2013, 206, 18.	7.7	16
290	Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj. Astrophysical Journal, 2017, 841, 64.	4.5	16
291	Determination of Primordial Metallicity and Mixing in the Type IIâ€P Supernova 1993W. Astrophysical Journal, 2003, 586, 1199-1210.	4.5	15
292	Metallicity from Type II supernovae from the (i)PTF. Astronomy and Astrophysics, 2016, 587, L7.	5.1	14
293	Time-varying sodium absorption in the Type Ia supernova 2013gh. Astronomy and Astrophysics, 2016, 592, A40.	5.1	14
294	TYPE Ia SUPERNOVA HUBBLE RESIDUALS AND HOST-GALAXY PROPERTIES. Astrophysical Journal, 2014, 784, 51.	4.5	13
295	Low Hubble Constant from the Physics of Type Ia Supernovae. Physical Review Letters, 1995, 75, 1874-1874.	7.8	12
296	iPTF Survey for Cool Transients. Publications of the Astronomical Society of the Pacific, 2018, 130, 034202.	3.1	12
297	Magnification, dust and time-delay constraints from the first resolved strongly lensed Type Ia supernova iPTF16geu. Monthly Notices of the Royal Astronomical Society, $\hat{0}$, , .	4.4	12
298	LSQ13ddu: a rapidly evolving stripped-envelope supernova with early circumstellar interaction signatures. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2208-2228.	4.4	12
299	The Palomar Transient Factory Sky2Night programme. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4507-4528.	4.4	11
300	A catalogue of over 10 million variable source candidates in ZTF Data Release 1. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5782-5790.	4.4	11
301	Spectral models for early time SN 2011fe observations. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2549-2556.	4.4	10
302	DES15E2mlf: A Spectroscopically Confirmed Superluminous Supernova that Exploded 3.5ÂGyr After the Big Bang. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	10
303	Early Ultraviolet Observations of Type Iln Supernovae Constrain the Asphericity of Their Circumstellar Material. Astrophysical Journal, 2020, 899, 51.	4.5	9
304	TYPE Ia SUPERNOVA DISTANCE MODULUS BIAS AND DISPERSION FROM < i>K < /i>CORRECTION ERRORS: A DIRECT MEASUREMENT USING LIGHT CURVE FITS TO OBSERVED SPECTRAL TIME SERIES. Astrophysical Journal, 2015, 800, 57.	4.5	8
305	On the Origin of SN 2016hil—A Type II Supernova in the Remote Outskirts of an Elliptical Host. Astrophysical Journal, 2019, 887, 127.	4.5	8
306	DES16C3cje: A low-luminosity, long-lived supernova. Monthly Notices of the Royal Astronomical Society, 2020, 496, 95-110.	4.4	8

#	Article	IF	Citations
307	Spectroscopy of the first resolved strongly lensed Type Ia supernova iPTF16geu. Monthly Notices of the Royal Astronomical Society, 2021, 502, 510-520.	4.4	8
308	R CORONAE BOREALIS STARS IN M31 FROM THE PALOMAR TRANSIENT FACTORY. Astrophysical Journal Letters, 2013, 767, L23.	8.3	7
309	Donâ∈™t Blink: Constraining the Circumstellar Environment of the Interacting Type Ia Supernova 2015cp. Astrophysical Journal, 2018, 868, 21.	4.5	7
310	CONSTRAINING DUST AND COLOR VARIATIONS OF HIGH-zSNe USING NICMOS ON THEHUBBLE SPACE TELESCOPE. Astrophysical Journal, 2009, 700, 1415-1427.	4.5	6
311	Optical and ultraviolet spectroscopic analysis of SNÂ2011fe at late times. Monthly Notices of the Royal Astronomical Society, 0, , stx241.	4.4	6
312	PTF11rka: an interacting supernova at the crossroads of stripped-envelope and H-poor superluminous stellar core collapses. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3542-3556.	4.4	6
313	Supernova siblings and their parent galaxies in the Zwicky Transient Facility Bright Transient Survey. Monthly Notices of the Royal Astronomical Society, 2022, 511, 241-254.	4.4	6
314	The Palomar transient factory. Proceedings of SPIE, 2015, , .	0.8	5
315	The mystery of photometric twins DES17X1boj and DES16E2bjy. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5576-5589.	4.4	5
316	Tumbling Dice: Radio Constraints on the Presence of Circumstellar Shells around Type Ia Supernovae with Impact Near Maximum Light. Astrophysical Journal, 2021, 912, 23.	4.5	5
317	The distance to the type IA supernova 1972E and its parent galaxy NGC 5253: A prediction. Astrophysical Journal, 1994, 421, L87.	4.5	5
318	The Supernova in the Pinwheel Galaxy. Annual Review of Nuclear and Particle Science, 2013, 63, 153-174.	10.2	4
319	Toward Rate Estimation for Transient Surveys. I. Assessing Transient Detectability and Volume Sensitivity for iPTF. Astrophysical Journal, 2019, 881, 128.	4.5	4
320	Outside the Wall: Hydrodynamics of Type I Supernovae Interacting with a Partially Swept-up Circumstellar Medium. Astrophysical Journal, 2020, 894, 122.	4.5	4
321	Gravitational Microlensing Event Statistics for the Zwicky Transient Facility. Astrophysical Journal, 2020, 897, 144.	4.5	4
322	DECAM-GROWTH SEARCH FOR THE FAINT AND DISTANT BINARY NEUTRON STAR AND NEUTRON STAR-BLACK HOLE MERGERS IN O3A. Revista Mexicana De AstronomÃa Y AstrofÃsica Serie De Conferencias, 0, 53, 91-99.	0.2	4
323	The Hubble constant, supernova light curves and spectra, and radiation transport. Physics of Plasmas, 1997, 4, 2016-2022.	1.9	3
324	Dynamic Observing and Tiling Strategies for the DESI Legacy Surveys. Astronomical Journal, 2020, 160, 61.	4.7	3

#	Article	IF	CITATIONS
325	Removing Atmospheric Fringes from Zwicky Transient Facility i-band Images using Principal Component Analysis. Publications of the Astronomical Society of the Pacific, 2021, 133, 064503.	3.1	2
326	Cosmology with the Nearby Supernova Factory. Progress in Particle and Nuclear Physics, 2011, 66, 335-339.	14.4	1
327	A Six-year Image-subtraction Light Curve of SN 2010jl. Publications of the Astronomical Society of the Pacific, 2019, 131, 054204.	3.1	1
328	Searching for optical transient and variable sources with the Palomar Transient Factory. SPIE Newsroom, $0, , .$	0.1	1
329	The Nearby Supernova Factory: First Results. EAS Publications Series, 2009, 36, 11-15.	0.3	O
330	The Nearby Supernova Factory dataset-improving SNe Ia as dark energy probes. , 2010, , .		0
331	SN 2010jp (PTF10aaxi): A Jet-driven Type II Supernova. Proceedings of the International Astronomical Union, 2011, 7, 159-166.	0.0	O
332	Type Ia Supernovae Strongly Interacting with Their Circumstellar Medium. Proceedings of the International Astronomical Union, 2015, 11, 237-237.	0.0	0
333	The effect of interstellar absorption on measurements of the baryon acoustic peak in the Lyman $\hat{l}\pm$ forest. Monthly Notices of the Royal Astronomical Society, 2017, 472, 799-807.	4.4	0
334	Predicting Resource Requirement in Intermediate Palomar Transient Factory Workflow. , 2020, , .		0