List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/401830/publications.pdf Version: 2024-02-01

FLIGA MADTI Ì

#	Article	IF	CITATIONS
1	Centrosome maturation $\hat{a} \in $ in tune with the cell cycle. Journal of Cell Science, 2022, 135, .	1.2	21
2	Cell intercalation driven by SMAD3 underlies secondary neural tube formation. Developmental Cell, 2021, 56, 1147-1163.e6.	3.1	17
3	In Vivo Analysis of the Mesenchymal-to-Epithelial Transition During Chick Secondary Neurulation. Methods in Molecular Biology, 2021, 2179, 183-197.	0.4	4
4	Multimerization of Zika Virus-NS5 Causes Ciliopathy and Forces Premature Neurogenesis. Cell Stem Cell, 2020, 27, 920-936.e8.	5.2	18
5	The Colors of the Ocean Plastics. Environmental Science & amp; Technology, 2020, 54, 6594-6601.	4.6	136
6	A SMAD1/5-YAP signaling module drives radial glia self-amplification and growth of the developing cerebral cortex. Development (Cambridge), 2020, 147, .	1.2	12
7	Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells. Nature Materials, 2019, 18, 397-405.	13.3	201
8	A centrosomal view of CNS growth. Development (Cambridge), 2018, 145, .	1.2	33
9	E proteins sharpen neurogenesis by modulating proneural bHLH transcription factors' activity in an E-box-dependent manner. ELife, 2018, 7, .	2.8	25
10	The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation. Science Advances, 2017, 3, e1600582.	4.7	417
11	Shh-mediated centrosomal recruitment of PKA promotes symmetric proliferative neuroepithelial cellÂdivision. Nature Cell Biology, 2017, 19, 493-503.	4.6	39
12	Introduction to the special section: Spinal Cord a model to understand CNS development and regeneration. Developmental Biology, 2017, 432, 1-2.	0.9	2
13	Evolutionary recruitment of flexible Esrp-dependent splicing programs into diverse embryonic morphogenetic processes. Nature Communications, 2017, 8, 1799.	5.8	40
14	Low Abundance of Plastic Fragments in the Surface Waters of the Red Sea. Frontiers in Marine Science, 2017, 4, .	1.2	43
15	Function of Armcx3 and Armc10/SVH Genes in the Regulation of Progenitor Proliferation and Neural Differentiation in the Chicken Spinal Cord. Frontiers in Cellular Neuroscience, 2016, 10, 47.	1.8	12
16	Delamination of neural crest cells requires transient and reversible Wnt inhibition mediated by DACT1/2. Development (Cambridge), 2016, 143, 2194-205.	1.2	39
17	Leader Cells Define Directionality of Trunk, but Not Cranial, Neural Crest Cell Migration. Cell Reports, 2016, 15, 2076-2088.	2.9	100
18	Changes in the Floating Plastic Pollution of the Mediterranean Sea in Relation to the Distance to Land. PLoS ONE, 2016, 11, e0161581.	1.1	237

#	Article	IF	CITATIONS
19	Plastic Accumulation in the Mediterranean Sea. PLoS ONE, 2015, 10, e0121762.	1.1	553
20	The strength of SMAD1/5 activity determines the mode of stem cell division in the developing spinal cord. Journal of Cell Biology, 2014, 204, 591-605.	2.3	39
21	Sustained Wnt/ \hat{l}^2 -catenin signalling causes neuroepithelial aberrations through the accumulation of aPKC at the apical pole. Nature Communications, 2014, 5, 4168.	5.8	27
22	Smad2 and Smad3 cooperate and antagonize simultaneously in vertebrate neurogenesis. Development (Cambridge), 2014, 141, e107-e107.	1.2	0
23	The multiple activities of BMPs during spinal cord development. Cellular and Molecular Life Sciences, 2013, 70, 4293-4305.	2.4	41
24	Sonic Hedgehog Signaling Switches the Mode of Division in the Developing Nervous System. Cell Reports, 2013, 4, 492-503.	2.9	93
25	Temporal control of BMP signalling determines neuronal subtype identity in the dorsal neural tube. Development (Cambridge), 2013, 140, 1467-1474.	1.2	61
26	Identification of a putative transcriptome signature common to neuroblastoma and neural crest cells. Developmental Neurobiology, 2013, 73, 815-827.	1.5	14
27	Smad2 and Smad3 cooperate and antagonize simultaneously in vertebrate neurogenesis. Journal of Cell Science, 2013, 126, 5335-43.	1.2	27
28	LMO4 is an Essential Cofactor in the Snail2-Mediated Epithelial-to-Mesenchymal Transition of Neuroblastoma and Neural Crest Cells. Journal of Neuroscience, 2013, 33, 2773-2783.	1.7	33
29	Jagged2 controls the generation of motor neuron and oligodendrocyte progenitors in the ventral spinal cord. Cell Death and Differentiation, 2012, 19, 209-219.	5.0	37
30	Canonical BMP7 activity is required for the generation of discrete neuronal populations in the dorsal spinal cord. Development (Cambridge), 2012, 139, 259-268.	1.2	76
31	Dorsal–ventral patterning of the neural tube: A tale of three signals. Developmental Neurobiology, 2012, 72, 1471-1481.	1.5	159
32	Wnt won the war: Antagonistic role of Wnt over Shh controls dorsoâ€ventral patterning of the vertebrate neural tube. Developmental Dynamics, 2010, 239, 69-76.	0.8	130
33	Foxj1 regulates floor plate cilia architecture and modifies the response of cells to sonic hedgehog signalling. Development (Cambridge), 2010, 137, 4271-4282.	1.2	86
34	Chimeric tRNAs as tools to induce proteome damage and identify components of stress responses. Nucleic Acids Research, 2010, 38, e30-e30.	6.5	38
35	H3K27me3 regulates BMP activity in developing spinal cord. Development (Cambridge), 2010, 137, 2915-2925.	1.2	84
36	Distinct Sonic Hedgehog signaling dynamics specify floor plate and ventral neuronal progenitors in the vertebrate neural tube. Genes and Development, 2010, 24, 1186-1200.	2.7	180

#	Article	IF	CITATIONS
37	Neural stem cells: the need for a proper orientation. Current Opinion in Genetics and Development, 2010, 20, 438-442.	1.5	28
38	H3K27me3 regulates BMP activity in developing spinal cord. Journal of Cell Science, 2010, 123, e1-e1.	1.2	2
39	Hedgehog activation is required upstream of Wnt signalling to control neural progenitor proliferation. Development (Cambridge), 2009, 136, 3301-3309.	1.2	64
40	Wnt canonical pathway restricts graded Shh/Gli patterning activity through the regulation of Gli3 expression. Development (Cambridge), 2008, 135, 237-247.	1.2	170
41	The TGFÎ ² intracellular effector Smad3 regulates neuronal differentiation and cell fate specification in the developing spinal cord. Development (Cambridge), 2007, 134, 65-75.	1.2	58
42	The Sonic hedgehog pathway independently controls the patterning,proliferation and survival of neuroepithelial cells by regulating Gli activity. Development (Cambridge), 2006, 133, 517-528.	1.2	164
43	Morphogens in motion: Growth control of the neural tube. Journal of Neurobiology, 2005, 64, 376-387.	3.7	50
44	Introduction: Unexpected roles for morphogens in the development and regeneration of the CNS. Journal of Neurobiology, 2005, 64, 321-323.	3.7	4
45	Bmp2 antagonizes sonic hedgehog-mediated proliferation of cerebellar granule neurones through Smad5 signalling. Development (Cambridge), 2004, 131, 3159-3168.	1.2	130
46	Sonic hedgehog in CNS development: one signal, multiple outputs. Trends in Neurosciences, 2002, 25, 89-96.	4.2	233
47	Expression of chick BMP-1/Tolloid during patterning of the neural tube and somites. Mechanisms of Development, 2000, 91, 415-419.	1.7	16
48	Modulation of Early but Not Later Stages of Programmed Cell Death in Embryonic Avian Spinal Cord by Sonic Hedgehog. Molecular and Cellular Neurosciences, 1999, 13, 348-361.	1.0	49
49	Neurotrophin-3 Antibodies Disrupt the Normal Development of the Chick Retina. Journal of Neuroscience, 1996, 16, 4402-4410.	1.7	68
50	Developmentally regulated vitronectin influences cell differentiation, neuron survival and process outgrowth in the developing chicken retina. Neuroscience, 1995, 68, 245-253.	1.1	33
51	Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature, 1995, 375, 322-325.	13.7	463
52	Expression of the β-subunit isoforms of the Na, K-ATpase in rat embryo tissues, inner ear and choroid plexus. Biology of the Cell, 1994, 81, 215-222.	0.7	57
53	NEUROPEPTIDE Y M-RNA AND PEPTIDE ARE TRANSIENTLY EXPRESSED IN THE DEVELOPING RAT SPINAL CORD. NeuroReport, 1992, 3, 401-404.	0.6	12
54	A transient immunoglobulin-like reactivity in the developing cerebral cortex of rodents. NeuroReport, 1992, 3, 881-884.	0.6	11

#	Article	IF	CITATIONS
55	Carnosine, nerve growth factor receptor and tyrosine hydroxylase expression during the ontogeny of the rat olfactory system. Journal of Chemical Neuroanatomy, 1992, 5, 51-62.	1.0	29
56	Distribution of neuropeptide Y-like immunoreactivity in the brain of the lizardGallotia galloti. Journal of Comparative Neurology, 1992, 319, 387-405.	0.9	62
57	Carnosine in the brain and olfactory system of amphibia and reptilia: A comparative study using immunocytochemical and biochemical methods. Neuroscience Letters, 1991, 130, 182-186.	1.0	17
58	Ontogeny of peptide- and amine-containing neurones in motor, sensory, and autonomic regions of rat and human spinal cord, dorsal root ganglia, and rat skin. Journal of Comparative Neurology, 1987, 266, 332-359.	0.9	250