Eric W Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/401820/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Natural Product Reports, 2013, 30, 108-160.	10.3	1,692
2	Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7315-7320.	7.1	553
3	New developments in RiPP discovery, enzymology and engineering. Natural Product Reports, 2021, 38, 130-239.	10.3	412
4	A global assembly line for cyanobactins. Nature Chemical Biology, 2008, 4, 341-343.	8.0	257
5	Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. , 2006, 2, 729-735.		241
6	Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Natural Product Reports, 2009, 26, 537.	10.3	237
7	Complex microbiome underlying secondary and primary metabolism in the tunicate- <i>Prochloron</i> symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1423-32.	7.1	146
8	Genome streamlining and chemical defense in a coral reef symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20655-20660.	7.1	146
9	Metagenomic discovery of polybrominated diphenyl ether biosynthesis by marine sponges. Nature Chemical Biology, 2017, 13, 537-543.	8.0	141
10	Using Marine Natural Products to Discover a Protease that Catalyzes Peptide Macrocyclization of Diverse Substrates. Journal of the American Chemical Society, 2009, 131, 2122-2124.	13.7	133
11	Structure of Trichamide, a Cyclic Peptide from the Bloom-Forming Cyanobacterium Trichodesmium erythraeum, Predicted from the Genome Sequence. Applied and Environmental Microbiology, 2006, 72, 4382-4387.	3.1	131
12	Enzymatic Basis of Ribosomal Peptide Prenylation in Cyanobacteria. Journal of the American Chemical Society, 2011, 133, 13698-13705.	13.7	113
13	Metagenomic approaches to natural products from free-living and symbiotic organisms. Natural Product Reports, 2009, 26, 1488.	10.3	112
14	Ribosomal Route to Small-Molecule Diversity. Journal of the American Chemical Society, 2012, 134, 418-425.	13.7	105
15	Theopalauamide, a Bicyclic Glycopeptide from Filamentous Bacterial Symbionts of the Lithistid SpongeTheonella swinhoeifrom Palau and Mozambique. Journal of Organic Chemistry, 1998, 63, 1254-1258.	3.2	103
16	Linking Chemistry and Genetics in the Growing Cyanobactin Natural Products Family. Chemistry and Biology, 2011, 18, 508-519.	6.0	103
17	Thioesterase-Like Role for Fungal PKS-NRPS Hybrid Reductive Domains. Journal of the American Chemical Society, 2008, 130, 11149-11155.	13.7	96
18	Trading molecules and tracking targets in symbiotic interactions. Nature Chemical Biology, 2008, 4, 466-473.	8.0	95

#	Article	IF	CITATIONS
19	The Complete Genome of Teredinibacter turnerae T7901: An Intracellular Endosymbiont of Marine Wood-Boring Bivalves (Shipworms). PLoS ONE, 2009, 4, e6085.	2.5	93
20	Circular Logic: Nonribosomal Peptide-like Macrocyclization with a Ribosomal Peptide Catalyst. Journal of the American Chemical Society, 2010, 132, 15499-15501.	13.7	93
21	Makaluvamines H-M and Damirone C from the Pohnpeian Sponge Zyzzya fuliginosa. Journal of Natural Products, 1995, 58, 1861-1867.	3.0	92
22	Boronated tartrolon antibiotic produced by symbiotic cellulose-degrading bacteria in shipworm gills. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E295-304.	7.1	89
23	Species specificity of symbiosis and secondary metabolism in ascidians. ISME Journal, 2015, 9, 615-628.	9.8	85
24	Assessing the Combinatorial Potential of the RiPP Cyanobactin <i>tru</i> Pathway. ACS Synthetic Biology, 2015, 4, 482-492.	3.8	83
25	Insights into Heterocyclization from Two Highly Similar Enzymes. Journal of the American Chemical Society, 2010, 132, 4089-4091.	13.7	80
26	Structure and Biosynthesis of the Antibiotic Bottromycin D. Organic Letters, 2012, 14, 5050-5053.	4.6	80
27	Accessing chemical diversity from the uncultivated symbionts of small marine animals. Nature Chemical Biology, 2018, 14, 179-185.	8.0	80
28	Microsclerodermins C - E, antifungal cyclic peptides from the lithistid marine sponges Theonella sp. and Microscleroderma sp Tetrahedron, 1998, 54, 3043-3056.	1.9	79
29	Marine Molecular Machines: Heterocyclization in Cyanobactin Biosynthesis. ChemBioChem, 2010, 11, 1413-1421.	2.6	75
30	Discovery of chemoautotrophic symbiosis in the giant shipworm <i>Kuphus polythalamia</i> (Bivalvia:) Tj ETQqC United States of America, 2017, 114, E3652-E3658.	0 0 rgBT 7.1	/Overlock 10 72
31	Origin and Variation of Tunicate Secondary Metabolites. Journal of Natural Products, 2012, 75, 295-304.	3.0	71
32	A Bacterial Source for Mollusk Pyrone Polyketides. Chemistry and Biology, 2013, 20, 73-81.	6.0	71
33	Two Related Pyrrolidinedione Synthetase Loci in <i>Fusarium heterosporum</i> ATCC 74349 Produce Divergent Metabolites. ACS Chemical Biology, 2013, 8, 1549-1557.	3.4	71
34	Modularity of RiPP Enzymes Enables Designed Synthesis of Decorated Peptides. Chemistry and Biology, 2015, 22, 907-916.	6.0	71
35	Recognition Sequences and Substrate Evolution in Cyanobactin Biosynthesis. ACS Synthetic Biology, 2015, 4, 167-176.	3.8	71
36	Life in cellulose houses: symbiotic bacterial biosynthesis of ascidian drugs and drug leads. Current Opinion in Biotechnology, 2010, 21, 827-833.	6.6	68

#	Article	IF	CITATIONS
37	Mozamides A and B, Cyclic Peptides from a Theonellid Sponge from Mozambique. Journal of Natural Products, 1997, 60, 779-782.	3.0	66
38	Scleritodermin A, a Cytotoxic Cyclic Peptide from the Lithistid SpongeScleritodermanodosum. Journal of Natural Products, 2004, 67, 475-478.	3.0	66
39	Structures of Cyanobactin Maturation Enzymes Define a Family of Transamidating Proteases. Chemistry and Biology, 2012, 19, 1411-1422.	6.0	62
40	Genetic Evidence Supports Secondary Metabolic Diversity in Prochloron spp., the Cyanobacterial Symbiont of a Tropical Ascidian. Journal of Natural Products, 2004, 67, 1341-1345.	3.0	59
41	Pulicatins Aâ^'E, Neuroactive Thiazoline Metabolites from Cone Snail-Associated Bacteria. Journal of Natural Products, 2010, 73, 1922-1926.	3.0	59
42	Variation in Tropical Reef Symbiont Metagenomes Defined by Secondary Metabolism. PLoS ONE, 2011, 6, e17897.	2.5	59
43	Burkholdines 1097 and 1229, Potent Antifungal Peptides from <i>Burkholderia ambifaria</i> 2.2N. Organic Letters, 2010, 12, 664-666.	4.6	58
44	Accessing the Hidden Majority of Marine Natural Products through Metagenomics. ChemBioChem, 2011, 12, 1230-1236.	2.6	57
45	Parallel lives of symbionts and hosts: chemical mutualism in marine animals. Natural Product Reports, 2018, 35, 357-378.	10.3	57
46	Burkholdines from <i>Burkholderia ambifaria</i> : Antifungal Agents and Possible Virulence Factors. Journal of Natural Products, 2012, 75, 1518-1523.	3.0	55
47	The secret to a successful relationship: lasting chemistry between ascidians and their symbiotic bacteria. Invertebrate Biology, 2015, 134, 88-102.	0.9	54
48	Aestuaramides, a Natural Library of Cyanobactin Cyclic Peptides Resulting from Isoprene-Derived Claisen Rearrangements. ACS Chemical Biology, 2013, 8, 877-883.	3.4	53
49	Bacterial Endosymbiosis in a Chordate Host: Long-Term Co-Evolution and Conservation of Secondary Metabolism. PLoS ONE, 2013, 8, e80822.	2.5	52
50	Palauolol, a new anti-inflammatory sesterterpene from the sponge Fascaplysinopsis sp. from Palau. Tetrahedron Letters, 1996, 37, 3951-3954.	1.4	51
51	Combinatorial biosynthesis of RiPPs: docking with marine life. Current Opinion in Chemical Biology, 2016, 31, 15-21.	6.1	51
52	The Biochemistry and Structural Biology of Cyanobactin Pathways: Enabling Combinatorial Biosynthesis. Methods in Enzymology, 2018, 604, 113-163.	1.0	50
53	Metabolic model for diversity-generating biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1772-1777.	7.1	47
54	Chapter 23 Cyanobactin Ribosomally Synthesized Peptides—A Case of Deep Metagenome Mining. Methods in Enzymology, 2009, 458, 575-596.	1.0	45

#	Article	IF	CITATIONS
55	Molecular basis for the broad substrate selectivity of a peptide prenyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14037-14042.	7.1	45
56	Characterization of SafC, a Catechol 4- O -Methyltransferase Involved in Saframycin Biosynthesis. Applied and Environmental Microbiology, 2007, 73, 3575-3580.	3.1	44
57	Microhabitats within Venomous Cone Snails Contain Diverse Actinobacteria. Applied and Environmental Microbiology, 2009, 75, 6820-6826.	3.1	43
58	Native Promoter Strategy for High-Yielding Synthesis and Engineering of Fungal Secondary Metabolites. ACS Synthetic Biology, 2015, 4, 625-633.	3.8	43
59	Enzymatic N- and C-Protection in Cyanobactin RiPP Natural Products. Journal of the American Chemical Society, 2017, 139, 2884-2887.	13.7	43
60	Combinatorialization of Fungal Polyketide Synthase–Peptide Synthetase Hybrid Proteins. Journal of the American Chemical Society, 2014, 136, 17882-17890.	13.7	39
61	From chemical structure to environmental biosynthetic pathways: navigating marine invertebrate–bacteria associations. Trends in Biotechnology, 2005, 23, 437-440.	9.3	38
62	Animal biosynthesis of complex polyketides in a photosynthetic partnership. Nature Communications, 2020, 11, 2882.	12.8	38
63	Constellation Pharmacology: A New Paradigm for Drug Discovery. Annual Review of Pharmacology and Toxicology, 2015, 55, 573-589.	9.4	37
64	Isolation of Pyrrolocins A–C: <i>cis</i> - and <i>trans</i> -Decalin Tetramic Acid Antibiotics from an Endophytic Fungal-Derived Pathway. Journal of Natural Products, 2014, 77, 2537-2544.	3.0	36
65	Nobilamides A–H, Long-Acting Transient Receptor Potential Vanilloid-1 (TRPV1) Antagonists from Mollusk-Associated Bacteria. Journal of Medicinal Chemistry, 2011, 54, 3746-3755.	6.4	35
66	Structure and activity of lobophorins from a turrid mollusk-associated Streptomyces sp. Journal of Antibiotics, 2014, 67, 121-126.	2.0	33
67	The biosynthetic diversity of the animal world. Journal of Biological Chemistry, 2019, 294, 17684-17692.	3.4	33
68	Ancient defensive terpene biosynthetic gene clusters in the soft corals. Nature Chemical Biology, 2022, 18, 659-663.	8.0	33
69	Oxazinin A, a Pseudodimeric Natural Product of Mixed Biosynthetic Origin from a Filamentous Fungus. Organic Letters, 2014, 16, 4774-4777.	4.6	32
70	Host Control of Symbiont Natural Product Chemistry in Cryptic Populations of the Tunicate Lissoclinum patella. PLoS ONE, 2014, 9, e95850.	2.5	31
71	Post-Translational Tyrosine Geranylation in Cyanobactin Biosynthesis. Journal of the American Chemical Society, 2018, 140, 6044-6048.	13.7	31
72	Totopotensamides, Polyketide–Cyclic Peptide Hybrids from a Mollusk-Associated Bacterium <i>Streptomyces</i> sp Journal of Natural Products, 2012, 75, 644-649.	3.0	30

#	Article	IF	CITATIONS
73	Expanding the Chemical Space of Synthetic Cyclic Peptides Using a Promiscuous Macrocyclase from Prenylagaramide Biosynthesis. ACS Catalysis, 2020, 10, 7146-7153.	11.2	30
74	Biosynthesis of the Tetramic Acids Sch210971 and Sch210972. Organic Letters, 2015, 17, 2295-2297.	4.6	29
75	Genetic and Biochemical Reconstitution of Bromoform Biosynthesis in <i>Asparagopsis</i> Lends Insights into Seaweed Reactive Oxygen Species Enzymology. ACS Chemical Biology, 2020, 15, 1662-1670.	3.4	27
76	The hidden diversity of ribosomal peptide natural products. BMC Biology, 2010, 8, 83.	3.8	26
77	A Single Amino Acid Switch Alters the Isoprene Donor Specificity in Ribosomally Synthesized and Post-Translationally Modified Peptide Prenyltransferases. Journal of the American Chemical Society, 2018, 140, 8124-8127.	13.7	26
78	Absolute configuration of methyl (2Z,6R,8R,9E)-3,6-epoxy-4,6,8-triethyl-2,4,9-dodecatrienoate from the sponge Plakortis halichondrioides. Tetrahedron Letters, 1996, 37, 6681-6684.	1.4	25
79	Small Molecules in the Cone Snail Arsenal. Organic Letters, 2015, 17, 4933-4935.	4.6	25
80	Origin of Chemical Diversity in Prochloron-Tunicate Symbiosis. Applied and Environmental Microbiology, 2016, 82, 3450-3460.	3.1	25
81	Neuroactive diol and acyloin metabolites from cone snail-associated bacteria. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4867-4869.	2.2	23
82	An Obligate Peptidyl Brominase Underlies the Discovery of Highly Distributed Biosynthetic Gene Clusters in Marine Sponge Microbiomes. Journal of the American Chemical Society, 2021, 143, 10221-10231.	13.7	22
83	Synthesis of tyrosine derivatives for saframycin MX1 biosynthetic studies. Tetrahedron Letters, 2004, 45, 3921-3924.	1.4	21
84	Mindapyrroles A–C, Pyoluteorin Analogues from a Shipworm-Associated Bacterium. Journal of Natural Products, 2019, 82, 1024-1028.	3.0	21
85	Roads to Rome: Role of Multiple Cassettes in Cyanobactin RiPP Biosynthesis. Journal of the American Chemical Society, 2018, 140, 16213-16221.	13.7	20
86	A symbiotic bacterium of shipworms produces a compound with broad spectrum anti-apicomplexan activity. PLoS Pathogens, 2020, 16, e1008600.	4.7	20
87	Genomeâ€Miningâ€Based Discovery of the Cyclic Peptide Tolypamide and TolF, a Ser/Thr Forward <i>O</i> â€Prenyltransferase. Angewandte Chemie - International Edition, 2021, 60, 8460-8465.	13.8	20
88	Cyanobactins – Ubiquitous Cyanobacterial Ribosomal Peptide Metabolites. , 2010, , 539-558.		19
89	Pyrrolocin C and equisetin inhibit bacterial acetyl-CoA carboxylase. PLoS ONE, 2020, 15, e0233485.	2.5	19
90	Thailandamide, a Fatty Acid Synthesis Antibiotic That Is Coexpressed with a Resistant Target Gene. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	18

#	Article	IF	CITATIONS
91	Small-molecule mimicry hunting strategy in the imperial cone snail, <i>Conus imperialis</i> . Science Advances, 2021, 7, .	10.3	18
92	Three Principles of Diversity-Generating Biosynthesis. Accounts of Chemical Research, 2017, 50, 2569-2576.	15.6	17
93	Secondary Metabolism in the Gill Microbiota of Shipworms (Teredinidae) as Revealed by Comparison of Metagenomes and Nearly Complete Symbiont Genomes. MSystems, 2020, 5, .	3.8	15
94	Secondary Metabolites of the Genus Didemnum: A Comprehensive Review of Chemical Diversity and Pharmacological Properties. Marine Drugs, 2020, 18, 307.	4.6	14
95	Shipworm symbiosis ecology-guided discovery of an antibiotic that kills colistin-resistant Acinetobacter. Cell Chemical Biology, 2021, 28, 1628-1637.e4.	5.2	14
96	Catalysts for the Enzymatic Lipidation of Peptides. Accounts of Chemical Research, 2022, 55, 1313-1323.	15.6	14
97	A Silent Biosynthetic Gene Cluster from a Methanotrophic Bacterium Potentiates Discovery of a Substrate Promiscuous Proteusin Cyclodehydratase. ACS Chemical Biology, 2022, 17, 1577-1585.	3.4	14
98	Griseorhodins D–F, Neuroactive Intermediates and End Products of Post-PKS Tailoring Modification in Griseorhodin Biosynthesis. Journal of Natural Products, 2014, 77, 1224-1230.	3.0	13
99	Directing Biosynthesis. Methods in Enzymology, 2016, 575, 1-20.	1.0	11
100	Stenotrophomonas-Like Bacteria Are Widespread Symbionts in Cone Snail Venom Ducts. Applied and Environmental Microbiology, 2017, 83, .	3.1	10
101	Synergistic anti-methicillin-resistant Staphylococcus aureus (MRSA) activity and absolute stereochemistry of 7,8-dideoxygriseorhodin C. Journal of Antibiotics, 2020, 73, 290-298.	2.0	10
102	Halogenated Metal-Binding Compounds from Shipworm Symbionts. Journal of Natural Products, 2022, 85, 479-484.	3.0	10
103	An Enzymatic Route to Sunscreens. ChemBioChem, 2011, 12, 363-365.	2.6	9
104	Linking neuroethology to the chemical biology of natural products: interactions between cone snails and their fish prey, a case study. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 717-735.	1.6	9
105	Onydecalins, Fungal Polyketides with Anti- <i>Histoplasma</i> and Anti-TRP Activity. Journal of Natural Products, 2018, 81, 2605-2611.	3.0	9
106	Boholamide A, an APD-Class, Hypoxia-Selective Cyclodepsipeptide. Journal of Natural Products, 2020, 83, 1249-1257.	3.0	9
107	Secondary Metabolites of Onygenales Fungi Exemplified by <i>Aioliomyces pyridodomos</i> . Journal of Natural Products, 2019, 82, 1616-1626.	3.0	8
108	Sea Urchin Polyketide Synthase SpPks1 Produces the Naphthalene Precursor to Echinoderm Pigments. Journal of the American Chemical Society, 2022, 144, 9363-9371.	13.7	8

#	Article	IF	CITATIONS
109	Identification of Cyclic Depsipeptides and Their Dedicated Synthetase from <i>Hapsidospora irregularis</i> . Journal of Natural Products, 2017, 80, 363-370.	3.0	7
110	Modulating the Serotonin Receptor Spectrum of Pulicatin Natural Products. Journal of Natural Products, 2017, 80, 2360-2370.	3.0	7
111	Non-Peptidic Small Molecule Components from Cone Snail Venoms. Frontiers in Pharmacology, 2021, 12, 655981.	3.5	7
112	Cysteine-Free Intramolecular Ligation of N-Sulfanylethylanilide Peptide Using 4-Mercaptobenzylphosphonic Acid: Synthesis of Cyclic Peptide Trichamide. Synlett, 2017, 28, 1944-1949.	1.8	6
113	Cleaning up Polyketide Synthases. Chemistry and Biology, 2012, 19, 309-311.	6.0	5
114	Applying Promiscuous RiPP Enzymes to Peptide Backbone <i>N</i> -Methylation Chemistry. ACS Chemical Biology, 2022, 17, 2165-2178.	3.4	5
115	Neuroactive Type-A γ-Aminobutyric Acid Receptor Allosteric Modulator Steroids from the Hypobranchial Gland of Marine Mollusk, Conus geographus. Journal of Medicinal Chemistry, 2021, 64, 7033-7043.	6.4	4
116	Nicotinic Acetylcholine Receptor Partial Antagonist Polyamides from Tunicates and Their Predatory Sea Slugs. ACS Chemical Neuroscience, 2021, 12, 2693-2704.	3.5	4
117	Decoding and Recoding the Ribosomal Peptide Universe. Chemistry and Biology, 2012, 19, 1501-1502.	6.0	3
118	Inhibition of Biofilm Formation by Modified Oxylipins from the Shipworm Symbiont Teredinibacter turnerae. Marine Drugs, 2020, 18, 656.	4.6	3
119	Genomeâ€Miningâ€Based Discovery of the Cyclic Peptide Tolypamide and TolF, a Ser/Thr Forward <i>O</i> â€Prenyltransferase. Angewandte Chemie, 2021, 133, 8541-8546.	2.0	3
120	Control of Nucleophile Chemoselectivity in Cyanobactin YcaO Heterocyclases PatD and TruD. ACS Chemical Biology, 2022, 17, 1215-1225.	3.4	3
121	Hunting microbial metabolites. Nature Chemistry, 2015, 7, 375-376.	13.6	2
122	The Tunicate Metabolite 2-(3,5-Diiodo-4-methoxyphenyl)ethan-1-amine Targets Ion Channels of Vertebrate Sensory Neurons. ACS Chemical Biology, 2021, 16, 1654-1662.	3.4	1
123	Title is missing!. , 2020, 16, e1008600.		0
124	Title is missing!. , 2020, 16, e1008600.		0
125	Title is missing!. , 2020, 16, e1008600.		0

#	Article	IF	CITATIONS
127	Title is missing!. , 2020, 16, e1008600.		0
128	Title is missing!. , 2020, 16, e1008600.		0