Alice S Chen-Plotkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4017521/publications.pdf

Version: 2024-02-01

107 papers

13,979 citations

52 h-index 30087 103 g-index

116 all docs

116 docs citations

116 times ranked

16031 citing authors

#	Article	IF	CITATIONS
1	Diagnosis and management of dementia with Lewy bodies. Neurology, 2017, 89, 88-100.	1.1	2,805
2	Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature, 2010, 466, 1069-1075.	27.8	1,117
3	TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurology, The, 2008, 7, 409-416.	10.2	636
4	The Post-GWAS Era: From Association to Function. American Journal of Human Genetics, 2018, 102, 717-730.	6.2	626
5	Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nature Genetics, 2010, 42, 234-239.	21.4	479
6	Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain, 2018, 141, 2181-2193.	7.6	448
7	TAR DNA-binding protein 43 in neurodegenerative disease. Nature Reviews Neurology, 2010, 6, 211-220.	10.1	396
8	Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. Journal of Clinical Investigation, 2011, 121, 726-738.	8.2	343
9	Association of Cerebrospinal Fluid β-Amyloid 1-42, T-tau, P-tau ₁₈₁ , and α-Synuclein Levels With Clinical Features of Drug-Naive Patients With Early Parkinson Disease. JAMA Neurology, 2013, 70, 1277-87.	9.0	318
10	Expression of TDP-43 C-terminal Fragments in Vitro Recapitulates Pathological Features of TDP-43 Proteinopathies. Journal of Biological Chemistry, 2009, 284, 8516-8524.	3.4	304
11	APOE Ϊμ4 Increases Risk for Dementia in Pure Synucleinopathies. JAMA Neurology, 2013, 70, 223.	9.0	302
12	Plasma multianalyte profiling in mild cognitive impairment and Alzheimer disease. Neurology, 2012, 79, 897-905.	1.1	208
13	Longitudinal study of normal cognition in Parkinson disease. Neurology, 2015, 85, 1276-1282.	1.1	197
14	<i>TMEM106B</i> , the Risk Gene for Frontotemporal Dementia, Is Regulated by the microRNA-132/212 Cluster and Affects Progranulin Pathways. Journal of Neuroscience, 2012, 32, 11213-11227.	3.6	195
15	CSF biomarkers associated with disease heterogeneity in early Parkinson's disease: the Parkinson's Progression Markers Initiative study. Acta Neuropathologica, 2016, 131, 935-949.	7.7	190
16	Association of <i> GBA </i> Mutations and the E326K Polymorphism With Motor and Cognitive Progression in Parkinson Disease. JAMA Neurology, 2016, 73, 1217.	9.0	185
17	Diagnosis of Parkinson's disease on the basis of clinical and genetic classification: a population-based modelling study. Lancet Neurology, The, 2015, 14, 1002-1009.	10.2	179
18	A platform for discovery: The University of Pennsylvania Integrated Neurodegenerative Disease Biobank. Alzheimer's and Dementia, 2014, 10, 477.	0.8	167

#	Article	IF	Citations
19	The Spectrum of Mutations in Progranulin. Archives of Neurology, 2010, 67, 161-70.	4.5	166
20	Novel CSF biomarkers for Alzheimer's disease and mild cognitive impairment. Acta Neuropathologica, 2010, 119, 669-678.	7.7	164
21	Association of Cerebrospinal Fluid Neurofilament Light Protein Levels With Cognition in Patients With Dementia, Motor Neuron Disease, and Movement Disorders. JAMA Neurology, 2019, 76, 318.	9.0	161
22	<i>GBA</i> Variants are associated with a distinct pattern of cognitive deficits in <scp>P</scp> arkinson's disease. Movement Disorders, 2016, 31, 95-102.	3.9	158
23	Biomarkerâ€driven phenotyping in Parkinson's disease: A translational missing link in diseaseâ€modifying clinical trials. Movement Disorders, 2017, 32, 319-324.	3.9	145
24	Prediction of cognition in Parkinson's disease with a clinical–genetic score: a longitudinal analysis of nine cohorts. Lancet Neurology, The, 2017, 16, 620-629.	10.2	131
25	Circulating brain-enriched microRNAs as novel biomarkers for detection and differentiation of neurodegenerative diseases. Alzheimer's Research and Therapy, 2017, 9, 89.	6.2	129
26	Genetic influences on cognitive decline in Parkinson's disease. Movement Disorders, 2012, 27, 512-518.	3.9	127
27	Plasma epidermal growth factor levels predict cognitive decline in Parkinson disease. Annals of Neurology, 2011, 69, 655-663.	5.3	126
28	Finding useful biomarkers for Parkinson's disease. Science Translational Medicine, 2018, 10, .	12.4	125
29	TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathologica, 2014, 127, 407-418.	7.7	123
30	Variations in the progranulin gene affect global gene expression in frontotemporal lobar degeneration. Human Molecular Genetics, 2008, 17, 1349-1362.	2.9	121
31	L1CAM is not associated with extracellular vesicles in human cerebrospinal fluid or plasma. Nature Methods, 2021, 18, 631-634.	19.0	118
32	Blood-based biomarkers for Parkinson's disease. Parkinsonism and Related Disorders, 2014, 20, S99-S103.	2.2	117
33	Plasma apolipoprotein A1 as a biomarker for Parkinson disease. Annals of Neurology, 2013, 74, 119-127.	5.3	116
34	Clinical and Biochemical Differences in Patients Having Parkinson Disease With vs Without <i>GBA</i> Mutations. JAMA Neurology, 2013, 70, 852.	9.0	115
35	Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology. Acta Neuropathologica, 2018, 136, 363-376.	7.7	114
36	Genetic and Clinical Features of Progranulin-Associated Frontotemporal Lobar Degeneration. Archives of Neurology, 2011, 68, 488.	4.5	108

#	Article	IF	CITATIONS
37	Development and Validation of Pedigree Classification Criteria for Frontotemporal Lobar Degeneration. JAMA Neurology, 2013, 70, 1411.	9.0	107
38	Risk genotypes at TMEM106B are associated with cognitive impairment in amyotrophic lateral sclerosis. Acta Neuropathologica, 2011, 121, 373-380.	7.7	102
39	Decreased association of the transcription factor Sp1 with genes downregulated in Huntington's disease. Neurobiology of Disease, 2006, 22, 233-241.	4.4	101
40	Modeling kinetic rate variation in third generation DNA sequencing data to detect putative modifications to DNA bases. Genome Research, 2013, 23, 129-141.	5.5	99
41	Elevated CSF GAPâ€43 is Alzheimer's disease specific and associated with tau and amyloid pathology. Alzheimer's and Dementia, 2019, 15, 55-64.	0.8	97
42	A Dementia-Associated Risk Variant near TMEM106B Alters Chromatin Architecture and Gene Expression. American Journal of Human Genetics, 2017, 101, 643-663.	6.2	87
43	Conversion between Miniâ€Mental State Examination, Montreal Cognitive Assessment, and Dementia Rating Scaleâ€2 scores in Parkinson's disease. Movement Disorders, 2014, 29, 1809-1815.	3.9	86
44	The NINDS Parkinson's disease biomarkers program. Movement Disorders, 2016, 31, 915-923.	3.9	83
45	Biomarker discovery for Alzheimer's disease, frontotemporal lobar degeneration, and Parkinson's disease. Acta Neuropathologica, 2010, 120, 385-399.	7.7	79
46	PolyQ Repeat Expansions in ATXN2 Associated with ALS Are CAA Interrupted Repeats. PLoS ONE, 2011, 6, e17951.	2.5	73
47	New York City COVID-19 resident physician exposure during exponential phase of pandemic. Journal of Clinical Investigation, 2020, 130, 4726-4733.	8.2	72
48	CSF tau and \hat{I}^2 -amyloid predict cerebral synucleinopathy in autopsied Lewy body disorders. Neurology, 2018, 90, e1038-e1046.	1.1	68
49	Plasma apolipoprotein A1 associates with age at onset and motor severity in early Parkinson's disease patients. Movement Disorders, 2015, 30, 1648-1656.	3.9	66
50	Brain progranulin expression in GRN-associated frontotemporal lobar degeneration. Acta Neuropathologica, 2010, 119, 111-122.	7.7	64
51	Neurofilament Light Chain as a Biomarker for Cognitive Decline in Parkinson Disease. Movement Disorders, 2021, 36, 2945-2950.	3.9	63
52	A growth-factor-activated lysosomal K+ channel regulates Parkinson's pathology. Nature, 2021, 591, 431-437.	27.8	62
53	What can biomarkers tell us about cognition in Parkinson's disease?. Movement Disorders, 2014, 29, 622-633.	3.9	61
54	Association of plasma C-reactive protein levels with the diagnosis of Alzheimer's disease. Journal of the Neurological Sciences, 2013, 333, 9-12.	0.6	55

#	Article	IF	Citations
55	<i>TMEM106B</i> Effect on cognition in Parkinson disease and frontotemporal dementia. Annals of Neurology, 2019, 85, 801-811.	5.3	52
56	Unbiased Approaches to Biomarker Discovery in Neurodegenerative Diseases. Neuron, 2014, 84, 594-607.	8.1	51
57	Defining and validating a short form Montreal Cognitive Assessment (s-MoCA) for use in neurodegenerative disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1303-1310.	1.9	50
58	Parkinson's disease biomarkers: perspective from the NINDS Parkinson's Disease Biomarkers Program. Biomarkers in Medicine, 2017, 11, 451-473.	1.4	49
59	Increased expression of the frontotemporal dementia risk factor TMEM106B causes C9orf72-dependent alterations in lysosomes. Human Molecular Genetics, 2016, 25, ddw127.	2.9	47
60	Characterization of Parkinson's disease using blood-based biomarkers: A multicohort proteomic analysis. PLoS Medicine, 2019, 16, e1002931.	8.4	42
61	Plasma <scp>EGF</scp> and cognitive decline in Parkinson's disease and Alzheimer's disease. Annals of Clinical and Translational Neurology, 2016, 3, 346-355.	3.7	41
62	AAV-Mediated Progranulin Delivery to a Mouse Model of Progranulin Deficiency Causes T Cell-Mediated Toxicity. Molecular Therapy, 2019, 27, 465-478.	8.2	41
63	Common variant rs356182 near SNCA defines a Parkinson's disease endophenotype. Annals of Clinical and Translational Neurology, 2017, 4, 15-25.	3.7	40
64	Aberrant activation of non-coding RNA targets of transcriptional elongation complexes contributes to TDP-43 toxicity. Nature Communications, 2018, 9, 4406.	12.8	40
65	Omics in Neurodegenerative Disease: Hope or Hype?. Trends in Genetics, 2020, 36, 152-159.	6.7	38
66	Age-Correlated Gene Expression in Normal and Neurodegenerative Human Brain Tissues. PLoS ONE, 2010, 5, e13098.	2.5	37
67	Lower plasma apolipoprotein A1 levels are found in Parkinson's disease and associate with apolipoprotein A1 genotype. Movement Disorders, 2015, 30, 805-812.	3.9	37
68	<i>APOE</i> , thought disorder, and SPAREâ€AD predict cognitive decline in established Parkinson's disease. Movement Disorders, 2018, 33, 289-297.	3.9	35
69	Cerebrospinal fluid αâ€synuclein contributes to the differential diagnosis of Alzheimer's disease. Alzheimer's and Dementia, 2018, 14, 1052-1062.	0.8	34
70	Regional brain amyloid- \hat{l}^2 accumulation associates with domain-specific cognitive performance in Parkinson disease without dementia. PLoS ONE, 2017, 12, e0177924.	2.5	33
71	Expression of TMEM106B, the frontotemporal lobar degeneration-associated protein, in normal and diseased human brain. Acta Neuropathologica Communications, 2013, 1, 36.	5.2	32
72	Subjective Cognitive Complaint in Parkinson's Disease Patients With Normal Cognition: Canary in the Coal Mine?. Movement Disorders, 2020, 35, 1618-1625.	3.9	31

#	Article	IF	CITATIONS
73	Caregiver report of apathy predicts dementia in Parkinson's disease. Parkinsonism and Related Disorders, 2015, 21, 992-995.	2.2	29
74	An Alzheimer's Disease-Derived Biomarker Signature Identifies Parkinson's Disease Patients with Dementia. PLoS ONE, 2016, 11, e0147319.	2.5	25
75	Neuropsychological Subgroups in Non-Demented Parkinson's Disease: A Latent Class Analysis. Journal of Parkinson's Disease, 2017, 7, 385-395.	2.8	21
76	Abnormal B-Cell and Tfh-Cell Profiles in Patients With Parkinson Disease. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	21
77	Tau pathology associates with in vivo cortical thinning in Lewy body disorders. Annals of Clinical and Translational Neurology, 2020, 7, 2342-2355.	3.7	20
78	Delayed Leukoencephalopathy After Hypoxic-Ischemic Injury. Archives of Neurology, 2008, 65, 144-5.	4.5	19
79	Hypertrophic pachymeningitis and cerebral venous sinus thrombosis in inflammatory bowel disease. Journal of Clinical Neuroscience, 2010, 17, 1454-1456.	1.5	19
80	Vitamin D in the Parkinson Associated Risk Syndrome (PARS) study. Movement Disorders, 2017, 32, 1636-1640.	3.9	18
81	Cognitive Functional Abilities in Parkinson's Disease: Agreement Between Patients and Informants. Movement Disorders Clinical Practice, 2019, 6, 440-445.	1.5	15
82	TMEM106B modifies TDP-43 pathology in human ALS brain and cell-based models of TDP-43 proteinopathy. Acta Neuropathologica, 2021, 142, 629-642.	7.7	15
83	Unlocking the mystery of biomarkers: A brief introduction, challenges and opportunities in Parkinson Disease. Parkinsonism and Related Disorders, 2018, 46, S15-S18.	2.2	14
84	Statins and Cognition in Parkinson's Disease. Journal of Parkinson's Disease, 2017, 7, 661-667.	2.8	13
85	Quantitative detection of α-Synuclein and Tau oligomers and other aggregates by digital single particle counting. Npj Parkinson's Disease, 2022, 8, .	5.3	13
86	Genetic Modifiers in Neurodegeneration. Current Genetic Medicine Reports, 2018, 6, 11-19.	1.9	11
87	Blood transcriptomics for Parkinson disease?. Nature Reviews Neurology, 2018, 14, 5-6.	10.1	10
88	Updating Our Definitions of Parkinson's Disease for a Molecular Age. Journal of Parkinson's Disease, 2018, 8, S53-S57.	2.8	7
89	ADNC-RS, a clinical-genetic risk score, predicts Alzheimer's pathology in autopsy-confirmed Parkinson's disease and Dementia with Lewy bodies. Acta Neuropathologica, 2020, 140, 449-461.	7.7	7
90	Multimarker synaptic protein cerebrospinal fluid panels reflect TDP-43 pathology and cognitive performance in a pathological cohort of frontotemporal lobar degeneration. Molecular Neurodegeneration, 2022, 17, 29.	10.8	7

#	Article	IF	Citations
91	Plasma <scp>MIA</scp> , <scp>CRP</scp> , and Albumin Predict Cognitive Decline in Parkinson's Disease. Annals of Neurology, 2022, 92, 255-269.	5.3	7
92	Demyelinating polyneuropathy and herpes simplex lumbosacral radiculitis in a patient with chronic HIV infection. Aids, 2007, 21, 1663-1664.	2.2	6
93	Plasma Phosphorylated Tau 181 is a Biomarker of Alzheimer's Disease Pathology and Associated with Cognitive and Functional Decline. SSRN Electronic Journal, 0 , , .	0.4	6
94	Whole Clinic Research Enrollment in Parkinson's Disease: The Molecular Integration in Neurological Diagnosis (MIND) Study. Journal of Parkinson's Disease, 2021, 11, 757-765.	2.8	5
95	Psychometric Properties of the Clinical Dementia Rating Scale Sum of Boxes in Parkinson's Disease. Journal of Parkinson's Disease, 2021, 11, 737-745.	2.8	5
96	Neurofilament Light Chain Related to Longitudinal Decline in Frontotemporal Lobar Degeneration. Neurology: Clinical Practice, 2021, 11, 105-116.	1.6	5
97	Self- and Partner-Reported Subjective Memory Complaints: Association with Objective Cognitive Impairment and Risk of Decline. Journal of Alzheimer's Disease Reports, 2022, 6, 411-430.	2.2	4
98	LRRK2 and survival in progressive supranuclear palsy. Lancet Neurology, The, 2021, 20, 83-84.	10.2	3
99	Are Parkinson's Disease Patients the Ideal Preclinical Population for Alzheimer's Disease Therapeutics?. Journal of Personalized Medicine, 2021, 11, 834.	2.5	3
100	Sex Hormone-Binding Globulin (SHBG) in Cerebrospinal Fluid Does Not Discriminate between the Main FTLD Pathological Subtypes but Correlates with Cognitive Decline in FTLD Tauopathies. Biomolecules, 2021, 11, 1484.	4.0	3
101	Of mice and men: What a mouse model of microglial C9ORF72 deficiency doesâ€"and does notâ€"tell us about human neurodegenerative diseases. Neuron, 2021, 109, 2203-2204.	8.1	1
102	A novel antibodyâ€free mass spectrometry panel of CSF biomarkers for synaptic dysfunction. Alzheimer's and Dementia, 2021, 17, .	0.8	1
103	John Q. Trojanowski, â€~tour de force' in neurodegeneration (1946–2022). Nature Neuroscience, 2022, , .	14.8	1
104	Reply to letter: <scp>P</scp> lasma fasting cholesterol profiles and age at onset in <scp>P</scp> arkinson's disease. Movement Disorders, 2015, 30, 1975-1976.	3.9	0
105	Reply to: "Ageâ€Adjusted Serum Neurofilament Predicts Cognitive Decline in Parkinson's Disease (<scp>MARKâ€PD</scp>)― Movement Disorders, 2022, 37, 436-437.	3.9	0
106	Dementia with Lewy bodies (DLB) with amyloid coâ€pathology has a distinct CSF proteomics profile compared to pure DLB and Alzheimer disease. Alzheimer's and Dementia, 2021, 17, .	0.8	0
107	CSF protein panels reflecting multiple pathophysiological mechanisms for early and specific diagnosis of Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, .	0.8	O