Gordon W Arbuthnott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4017349/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Research, 1970, 24, 485-493.	1.1	1,919
2	Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nature Neuroscience, 2006, 9, 251-259.	7.1	678
3	Crossed connections of the substantia nigra in the rat. Journal of Comparative Neurology, 1982, 207, 283-303.	0.9	415
4	Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex In vitro. Neuroscience, 1996, 70, 1-5.	1.1	292
5	Amphetamine-Induced Dopamine Release in the Rat Striatum: An In Vivo Microdialysis Study. Journal of Neurochemistry, 1988, 50, 346-355.	2.1	288
6	Pathologic gambling in Parkinson's disease: A behavioral manifestation of pharmacologic treatment?. Movement Disorders, 2000, 15, 869-872.	2.2	284
7	Space, time and dopamine. Trends in Neurosciences, 2007, 30, 62-69.	4.2	273
8	Plasticity of Synapses in the Rat Neostriatum after Unilateral Lesion of the Nigrostriatal Dopaminergic Pathway. Journal of Neuroscience, 1998, 18, 4732-4743.	1.7	272
9	Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex. Neuron, 2012, 76, 1030-1041.	3.8	267
10	Resonant Antidromic Cortical Circuit Activation as a Consequence of High-Frequency Subthalamic Deep-Brain Stimulation. Journal of Neurophysiology, 2007, 98, 3525-3537.	0.9	251
11	Evidence of a breakdown of corticostriatal connections in Parkinson's disease. Neuroscience, 2005, 132, 741-754.	1.1	241
12	Intracranial self-stimulation with electrodes in the region of the locus coeruleus. Brain Research, 1972, 36, 275-287.	1.1	213
13	Spine density on neostriatal neurones changes with 6-hydroxydopamine lesions and with age. Brain Research, 1989, 503, 334-338.	1.1	204
14	Electrophysiological properties of single units in dopamine-rich mesencephalic transplants in rat brain. Neuroscience Letters, 1985, 57, 205-210.	1.0	175
15	Feedback loop or output pathway in striato-nigral fibres?. Nature, 1977, 265, 363-365.	13.7	161
16	Graft-derived recovery from 6-OHDA lesions: specificity of ventral mesencephalic graft tissues. Experimental Brain Research, 1988, 71, 411-24.	0.7	153
17	Dopamine and synaptic plasticity in the neostriatum. Journal of Anatomy, 2000, 196, 587-596.	0.9	150
18	The Basic Domain of the Lentiviral Tat Protein Is Responsible for Damages in Mouse Brain: Involvement of Cytokines. Virology, 1994, 205, 519-529.	1.1	144

#	Article	IF	CITATIONS
19	Effects of Selective Monoamine Oxidase Inhibitors on the In Vivo Release and Metabolism of Dopamine in the Rat Striatum. Journal of Neurochemistry, 1990, 55, 981-988.	2.1	137
20	Striatal Contributions to Reward and Decision Making: Making Sense of Regional Variations in a Reiterated Processing Matrix. Annals of the New York Academy of Sciences, 2007, 1104, 192-212.	1.8	134
21	Morphological changes in the rat neostriatum after unilateral 6-hydroxydopamine injections into the nigrostriatal pathway. Experimental Brain Research, 1993, 93, 17-27.	0.7	133
22	The electrophysiology of dopamine (D2) receptors: A study of the actions of dopamine on corticostriatal transmission. Neuroscience, 1983, 10, 349-355.	1.1	130
23	Depletion of catecholaminesin vivo induced by electrical stimulation of central monoamine pathways. Brain Research, 1970, 24, 471-483.	1.1	123
24	Relation of contraversive turning to unilateral release of dopamine from the nigrostriatal pathway in rats. Experimental Neurology, 1971, 30, 484-491.	2.0	114
25	Neurotoxicity of peptide analogues of the transactivating protein tat from maedi-visna virus and human immunodeficiency virus. Neuroscience, 1993, 53, 1-6.	1.1	112
26	Interactions between serotonergic and dopaminergic systems in rat brain demonstrated by small unilateral lesions of the raphe nuclei. European Journal of Pharmacology, 1979, 57, 295-305.	1.7	95
27	Central catecholamine turnover and self-stimulation behaviour. Brain Research, 1971, 27, 406-413.	1.1	92
28	Cortical Effects of Subthalamic Stimulation Correlate with Behavioral Recovery from Dopamine Antagonist Induced Akinesia. Cerebral Cortex, 2009, 19, 1055-1063.	1.6	91
29	Inhibition of Neuronal Nitric Oxide Synthase by 7-Nitroindazole: Effects upon Local Cerebral Blood Flow and Glucose Use in the Rat. Journal of Cerebral Blood Flow and Metabolism, 1995, 15, 766-773.	2.4	89
30	Cholinergic modulation of striatal microcircuits. European Journal of Neuroscience, 2019, 49, 604-622.	1.2	87
31	Electrophysiological demonstration of host cortical inputs to striatal grafts. Neuroscience Letters, 1987, 83, 275-281.	1.0	83
32	Dopamine release and metabolism in the rat striatum: An analysis by â€~in vivo' brain microdialysis. , 1990, 48, 281-293.		79
33	In Vivo Mechanisms Underlying Dopamine Release from Rat Nigrostriatal Terminals: II. Studies Using Potassium and Tyramine. Journal of Neurochemistry, 1990, 54, 1844-1851.	2.1	77
34	Double anterograde tracing of outputs from adjacent "barrel columns―of rat somatosensory cortex. Neostriatal projection patterns and terminal ultrastructure. Neuroscience, 1999, 88, 119-133.	1.1	76
35	Electrophysiological properties of nigrothalamic neurons after 6-hydroxydopamine lesions in the rat. Neuroscience, 1990, 38, 447-456.	1.1	69
36	Neurone specific regulation of dendritic spines in vivo by post synaptic density 95 protein (PSD-95). Brain Research, 2006, 1090, 89-98.	1.1	66

#	Article	IF	CITATIONS
37	Turning behavior induced by electrical stimulation of the nigro-neostriatal system of the rat. Experimental Neurology, 1975, 47, 162-172.	2.0	63
38	Distribution and synaptic contacts of the cortical terminals arising from neurons in the rat ventromedial thalamic nucleus. Neuroscience, 1990, 38, 47-60.	1.1	63
39	Altered paw preference after unilateral 6-hydroxy-dopamine injections into lateral hypothalamus. Neuropsychologia, 1981, 19, 463-467.	0.7	58
40	Computational models of the basal ganglia. Movement Disorders, 2000, 15, 762-770.	2.2	58
41	Cortical Effects of Deep Brain Stimulation. JAMA Neurology, 2014, 71, 100.	4.5	56
42	Delayed synaptic degeneration in the CNS of Wlds mice after cortical lesion. Brain, 2006, 129, 1546-1556.	3.7	55
43	The pattern of innervation of the corpus striatum by the substantia nigra. Neuroscience, 1981, 6, 2063-2067.	1.1	54
44	A light and electron microscopical study of enkephalin-immunoreactive structures in the rat neostriatum after removal of the nigrostriatal dopaminergic pathway. Neuroscience, 1991, 42, 715-730.	1.1	54
45	Function of Catecholamine-containing Neurones in Mammalian Central Nervous System. Nature: New Biology, 1972, 238, 245-246.	4.5	52
46	Identification of the source of the bilateral projection system from cortex to somatosensory neostriatum and an exploration of its physiological actions. Neuroscience, 2001, 103, 87-96.	1.1	50
47	Simulation of GABA function in the basal ganglia: computational models of GABAergic mechanisms in basal ganglia function. Progress in Brain Research, 2007, 160, 313-329.	0.9	50
48	Refinement of learned skilled movement representation in motor cortex deep output layer. Nature Communications, 2017, 8, 15834.	5.8	50
49	An afterhyperpolarization recorded in striatal cells ?in vitro?: effect of dopamine administration. Experimental Brain Research, 1988, 71, 399-405.	0.7	45
50	In Vivo Mechanisms Underlying Dopamine Release from Rat Nigrostriatal Terminals: I. Studies Using Veratrine and Ouabain. Journal of Neurochemistry, 1990, 54, 1834-1843.	2.1	45
51	Dendritic domains of medium spiny neurons in the primate striatum: Relationships to striosomal borders. Journal of Comparative Neurology, 1993, 337, 614-628.	0.9	44
52	Cerebrovascular autoregulation in response to hypertension induced by NG-nitro-l-arginine methyl ester. Neuroscience, 1994, 59, 13-20.	1.1	44
53	The effect of chronic lithium administration on dopamine metabolism in rat striatum. Psychopharmacology, 1978, 56, 163-166.	1.5	40
54	Distribution of thyrotrophin-releasing hormone receptor messenger RNA in rat pituitary and brain. Neuroscience, 1993, 53, 877-887.	1.1	39

GORDON W ARBUTHNOTT

#	Article	IF	CITATIONS
55	Selective loss of AMPA receptors at corticothalamic synapses in the epileptic stargazer mouse. Neuroscience, 2012, 217, 19-31.	1.1	39
56	The rotational model and microdialysis: Significance for dopamine signalling, clinical studies, and beyond. Progress in Neurobiology, 2010, 90, 176-189.	2.8	37
57	Non-dopamine containing efferents of substantia nigra: The pathway to the lower brain stem. Journal of Neural Transmission, 1980, 47, 221-226.	1.4	36
58	Oestradiol-17β Increases the Firing Rate of Antidromically Identified Neurones of the Rat Neostriatum. Neuroendocrinology, 1983, 37, 106-110.	1.2	36
59	Ultrastructural characteristics of enkephalin-immunoreactive boutons and their postsynaptic targets in the shell and core of the nucleus accumbens of the rat. Journal of Comparative Neurology, 1993, 332, 224-236.	0.9	36
60	Power Fluctuations in Beta and Gamma Frequencies in Rat Globus Pallidus: Association with Specific Phases of Slow Oscillations and Differential Modulation by Dopamine D ₁ and D ₂ Receptors. Journal of Neuroscience, 2011, 31, 6098-6107.	1.7	36
61	The anatomical substrate of the turning behaviour seen after lesions in the nigrostriatal dopamine system. Neuroscience, 1983, 8, 87-95.	1.1	34
62	Electrophysiological and anatomical observations concerning the pallidostriatal pathway in the rat. Experimental Brain Research, 1989, 74, 303-10.	0.7	33
63	Glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes are increased in the hypothalamus of androgen-insensitive testicular feminized (Tfm) mice. Neuroscience Letters, 1990, 118, 77-81.	1.0	31
64	Thalamic afferents to prefrontal cortices from ventral motor nuclei in decisionâ€making. European Journal of Neuroscience, 2019, 49, 646-657.	1.2	31
65	The striatonigral fibres and the feedback control of dopamine metabolism. Psychological Medicine, 1978, 8, 471-482.	2.7	30
66	Schneider's First-Rank Symptoms of Schizophrenia. Archives of General Psychiatry, 1984, 41, 1040.	13.8	30
67	Cell Assembly Signatures Defined by Short-Term Synaptic Plasticity in Cortical Networks. International Journal of Neural Systems, 2015, 25, 1550026.	3.2	30
68	Lesions of the locus ceruleus and noradrenaline metabolism in cerebral cortex. Experimental Neurology, 1973, 41, 411-417.	2.0	29
69	Cyclic nucleotide losses during tissue processing for immunohistochemistry Journal of Histochemistry and Cytochemistry, 1980, 28, 54-55.	1.3	29
70	Brain microdialysis studies on the control of dopamine release and metabolism in vivo. Journal of Neuroscience Methods, 1990, 34, 73-81.	1.3	29
71	Neurotoxic mechanisms of transactivating protein Tat of Maedi-Visna virus. Neuroscience Letters, 1995, 197, 215-218.	1.0	28
72	Plasticity of striatopallidal terminals following unilateral lesion of the dopaminergic nigrostriatal pathway: a morphological study. Experimental Brain Research, 1997, 116, 39-49.	0.7	28

#	Article	IF	CITATIONS
73	The neostriatum: two entities, one structure?. Brain Structure and Function, 2016, 221, 1737-1749.	1.2	28
74	THE RELATIONSHIP BETWEEN NORADRENALINE TURNOVER IN CEREBRAL CORTEX AND ELECTRICAL SELF-STIMULATION THROUGH ELECTRODES IN THE REGION OF LOCUS COERULEUS. Journal of Neurochemistry, 1975, 24, 677-681.	2.1	25
75	Separation of the motor consequences from other actions of unilateral 6-hydroxydopamine lesions in the nigrostriatal neurones of rat brain. Brain Research, 1985, 348, 220-228.	1.1	25
76	Chapter 21 The corticostriatal system on computer simulation: an intermediate mechanism for sequencing of actions. Progress in Brain Research, 1993, 99, 325-339.	0.9	25
77	Corticofugal axons from adjacent 'barrel' columns of rat somatosensory cortex: cortical and thalamic terminal patterns. Journal of Anatomy, 2000, 196, 379-390.	0.9	25
78	Actions of Adenosine A _{2A} Receptors on Synaptic Connections of Spiny Projection Neurons in the Neostriatal Inhibitory Network. Journal of Neurophysiology, 2008, 99, 1884-1889.	0.9	22
79	Extrasynaptic glutamate NMDA receptors: Key players in striatal function. Neuropharmacology, 2015, 89, 54-63.	2.0	22
80	Synchronized activation of striatal direct and indirect pathways underlies the behavior in unilateral dopamineâ€depleted mice. European Journal of Neuroscience, 2019, 49, 1512-1528.	1.2	20
81	The effect of unilateral and bilateral lesions in the locus coeruleus on the levels of 3-methoxy-4-hydroxyphenylglycol (MHPG) in neocortex. Experientia, 1973, 29, 52-53.	1.2	19
82	Possible links between hypothalamus and substantia nigra in the rat. Appetite, 1980, 1, 43-51.	1.8	19
83	Death of dopaminergic neurones in the rat substantia nigra can be induced by damage to globus pallidus. European Journal of Neuroscience, 2004, 20, 1737-1744.	1.2	19
84	Effects of potassium channel blockers on synaptic plasticity in the corticostriatal pathway. Neuropharmacology, 1998, 37, 523-533.	2.0	18
85	Basal ganglia—thalamus and the "crowning enigma― Frontiers in Neural Circuits, 2015, 9, 71.	1.4	18
86	Serotonin hyperinnervation after foetal nigra or raphe transplantation in the neostriatum of adult rats. Neuroscience Letters, 1991, 128, 281-284.	1.0	17
87	Acute in vivo neurotoxicity of peptides from Maedi Visna virus transactivating protein Tat. Brain Research, 1999, 830, 285-291.	1.1	17
88	Functional Anatomy: Dynamic States in Basal Ganglia Circuits. Frontiers in Neuroanatomy, 2010, 4, 144.	0.9	17
89	Some non-fluorescent connections of the nigro-neostriatal dopamine neurones. Brain Research Bulletin, 1982, 9, 367-378.	1.4	16
90	The effect of DSP-4 on some positively reinforced operant behaviors in the rat. Pharmacology Biochemistry and Behavior, 1982, 16, 197-202.	1.3	16

GORDON W ARBUTHNOTT

#	Article	IF	CITATIONS
91	Participation of projections from substantia nigra reticulata to the lower brain stem in turning behavior. Experimental Neurology, 1982, 78, 380-390.	2.0	15
92	Different patterns of molecular forms of somatostatin are released by the rat median eminence and hypothalamus. Neuroscience Letters, 1985, 57, 215-220.	1.0	15
93	Substance P release from rat nucleus accumbens and striatum: an in vivo study using antibody microprobes. Brain Research, 1993, 610, 234-241.	1.1	15
94	Striatal bilateral control of skilled forelimb movement. Cell Reports, 2021, 34, 108651.	2.9	15
95	Identified cholinergic neurones in the adult rat brain are enriched in GAP-43 mRNA: a double in situ hybridisation study. Journal of Chemical Neuroanatomy, 1995, 9, 17-26.	1.0	14
96	Development of dissociated cryopreserved rat cortical neurons in vitro. Journal of Neuroscience Methods, 2012, 205, 324-333.	1.3	14
97	Cerebellar sub-divisions differ in exercise-induced plasticity of noradrenergic axons and in their association with resilience to activity-based anorexia. Brain Structure and Function, 2017, 222, 317-339.	1.2	14
98	NORADRENALINE UPTAKE INTO CEREBAL CORTEX: A HISTOCHEMICAL STUDY. Journal of Neurochemistry, 1969, 16, 1599-1604.	2.1	13
99	Electrophysiological evidence for an input from the anterior olfactory nucleus to substantia nigra. Experimental Neurology, 1979, 66, 16-29.	2.0	13
100	Modulation by Dopamine of Rat Corticostriatal Input. Advances in Pharmacology, 1997, 42, 733-736.	1.2	13
101	Microglial activation is not prevented by tacrolimus but dopamine neuron damage is reduced in a rat model of Parkinson's disease progression. Brain Research, 2008, 1216, 78-86.	1.1	12
102	Striatal interneurons in dissociated cell culture. Histochemistry and Cell Biology, 2010, 134, 1-12.	0.8	12
103	Increases in dopamine metabolism are not a general feature of intracranial self-stimulation. Life Sciences, 1982, 30, 1081-1085.	2.0	11
104	The Corticostriatal System in Dissociated Cell Culture. Frontiers in Systems Neuroscience, 2011, 5, 52.	1.2	11
105	Presynaptic D1 heteroreceptors and mGlu autoreceptors act at individual cortical release sites to modify glutamate release. Brain Research, 2016, 1639, 74-87.	1.1	11
106	Immunohistochemical localization of a spectrin-like protein (fodrin) in nerve cells in culture. Neuroscience Letters, 1986, 63, 33-38.	1.0	10
107	The influence of the subthalamic nucleus upon the damage to the dopamine system following lesions of globus pallidus in rats. European Journal of Neuroscience, 2007, 26, 642-648.	1.2	10
108	Advances in Fibre Microendoscopy for Neuronal Imaging. Optical Data Processing and Storage, 2016, 2,	3.3	10

#	Article	IF	CITATIONS
109	Fiber-bundle-basis sparse reconstruction for high resolution wide-field microendoscopy. Biomedical Optics Express, 2018, 9, 1843.	1.5	10
110	Chapter 43 Identification of grafted neurons with fluorescent-labelled microbeads. Progress in Brain Research, 1990, 82, 385-390.	0.9	9
111	Gating of Cortical Input to the Striatum. Handbook of Behavioral Neuroscience, 2010, , 341-351.	0.7	9
112	Are the Symptoms of Parkinsonism Cortical in Origin?. Computational and Structural Biotechnology Journal, 2017, 15, 21-25.	1.9	9
113	Chapter 22 The thorny problem of what dopamine does in psychiatric disease. Progress in Brain Research, 1993, 99, 341-350.	0.9	8
114	Dopamine cells are neurones too!. Trends in Neurosciences, 1996, 19, 279.	4.2	8
115	Long-range monosynaptic inputs targeting apical and basal dendrites of primary motor cortex deep output neurons. Cerebral Cortex, 2022, 32, 3975-3989.	1.6	8
116	The use of ultra-violet setting glue for microelectrode fabrication. Journal of Neuroscience Methods, 1980, 3, 203-204.	1.3	7
117	Slowly Progressive Dopamine Cell Loss - A Model on which to Test Neuroprotective Strategies for Parkinson's Disease?. Reviews in the Neurosciences, 2009, 20, 85-94.	1.4	7
118	In vivo detection of immunoreactive neurokinin A release within rat substantia nigra and its dependency on a dopaminergic input. Brain Research, 1995, 679, 241-248.	1.1	6
119	Lithium Neurotoxicity. I. The Concentration of Lithium in Dopaminergic Systems of Rat Brain Determined by Flameless Atomic Absorption Spectrophotometry. Acta Pharmacologica Et Toxicologica, 1978, 42, 259-263.	0.0	6
120	Thalamostriatal synapses—another substrate for dopamine action?. Progress in Brain Research, 2014, 211, 1-11.	0.9	6
121	Rebuilding a realistic corticostriatal "social network―from dissociated cells. Frontiers in Systems Neuroscience, 2015, 9, 63.	1.2	6
122	Orthograde transport of nuclear yellow: a problem and its solution. Journal of Neuroscience Methods, 1982, 6, 365-368.	1.3	5
123	Astrocytes immunoreactive for glial fibrillary acidic protein (GFAP) are increased in the mediobasal hypothalamus in hypogonadal (hpg) mice. Molecular and Cellular Neurosciences, 1992, 3, 473-481.	1.0	5
124	Dealing with the devil in the detail – some thoughts about the next model of the basal ganglia. Parkinsonism and Related Disorders, 2009, 15, S139-S142.	1.1	5
125	Some Consequences of Local Blockade of Nitric-Oxide Synthase in the Rat Neostriatum. Advances in Behavioral Biology, 1994, , 171-178.	0.2	5
126	The role of dopamine in pontine intracranial self-stimulation: A re-examination of the problem. Neuroscience Letters, 1981, 26, 169-175.	1.0	4

#	Article	IF	CITATIONS
127	Functional Interactions within the Subthalamic Nucleus. Advances in Behavioral Biology, 2002, , 359-368.	0.2	4
128	The dopamine synapse and the notion of â€~pleasure centres' in the brain. Trends in Neurosciences, 1980, 3, 199-200.	4.2	3
129	UPTAKE OF 5â€HYDROXYTRYPTAMINE IN THE CATECHOLAMINE CONTAINING AREAS OF THE HYPOTHALAMUS OF THE RAT AFTER TREATMENT WITH PHENELZINE AND TRYPTOPHAN. British Journal of Pharmacology, 1981, 73, 143-148.	2.7	3
130	Neuropharmacology. , 2010, , 45-76.		3
131	Prelimbic cortical targets of ventromedial thalamic projections include inhibitory interneurons and corticostriatal pyramidal neurons in the rat. Brain Structure and Function, 2020, 225, 2057-2076.	1.2	3
132	Identification of 5-hydroxytryptamine in the presence of catecholamines by microspectrofluorimetry. Journal of Pharmacological Methods, 1980, 3, 97-102.	0.7	2
133	Support for the hypothesis that the actions of dopamine are "not merely motor.― Behavioral and Brain Sciences, 1982, 5, 54-55.	0.4	2
134	The influence of the estrous cycle on the activity of striatal neurons recorded from freely moving rats. Neuroscience Letters, 1989, 107, 233-238.	1.0	2
135	Involvement of Viral Regulatory Gene Products in the Pathogenesis of Lentivirus Infections. Annals of the New York Academy of Sciences, 1994, 724, 107-124.	1.8	2
136	An Introspective Approach: A Lifetime of Parkinson's Disease Research and Not Much to Show for It Yet?. Cells, 2021, 10, 513.	1.8	2
137	Studies of the afferent pathways to substantia nigra. Neuroscience Letters, 1976, 3, 111-112.	1.0	0
138	CHOLINE IN ALZHEIMER'S DISEASE. Lancet, The, 1978, 312, 1054.	6.3	0
139	Spectrin-like protein (fodrin) in nerve cells in culture. Biochemical Society Transactions, 1986, 14, 356-357.	1.6	0
140	Effects of dopamine on interaction of the two corticostriatal systems in rat somatosensory striatum. , 0, , .		0
141	Dopamine D2 receptor-expressing striatal projection neurons display long term potentiation after high frequency stimulation of cortical afferents. Neuroscience Research, 2010, 68, e341.	1.0	0
142	Absence seizures arising from a mutation that causes selective loss of AMPA receptors within thalamocortical networks. Journal of the Neurological Sciences, 2013, 333, e51.	0.3	0
143	FRETing over dopamine: single cell cAMP and protein kinase A responses to 100 ms dopamine application. Journal of Physiology, 2013, 591, 3107-3107.	1.3	0
144	Neuromodulation and Neurodynamics of Striatal Inhibitory Networks: Implications for Parkinson's Disease. , 2009, , 1-11.		0

#	Article	IF	CITATIONS
145	Finding active projections in a terminal system. Frontiers in Neuroinformatics, 0, 7, .	1.3	Ο
146	Fiber Bundle in-vivo Epifluorescence Microscopy with Image Reconstruction. , 2016, , .		0
147	A Cortical Substrate for Parkinsonism: A Personal Journey. International Journal of Clinical Research & Trials, 2018, 3, .	1.6	0
148	Sparse Recovery of Under-Sampled Fiber Bundle Images for In-Vivo Endoscopy. , 2019, , .		0
149	Activation of NOS Interneurones in Striatum after Excitotoxic Lesions of Rat Globus Pallidus. , 2005, , 485-491.		0
150	In Vivo Wireless Optogenetic Control of Skilled Motor Behavior. Journal of Visualized Experiments, 2021, , .	0.2	0