List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4015733/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature, 1997, 390, 249-256.	27.8	3,519
2	Essential <i>Bacillus subtilis</i> genes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4678-4683.	7.1	1,261
3	Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Research, 2001, 29, 683-692.	14.5	217
4	DNA microarray analysis of Bacillus subtilis DegU, ComA and PhoP regulons: an approach to comprehensive analysis of B.subtilis two-component regulatory systems. Nucleic Acids Research, 2001, 29, 3804-3813.	14.5	184
5	Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis. Journal of Bacteriology, 1997, 179, 4591-4598.	2.2	132
6	Comprehensive DNA Microarray Analysis of <i>Bacillus subtilis</i> Two-Component Regulatory Systems. Journal of Bacteriology, 2001, 183, 7365-7370.	2.2	130
7	myo-Inositol Catabolism in Bacillus subtilis. Journal of Biological Chemistry, 2008, 283, 10415-10424.	3.4	108
8	Epigallocatechin gallate promotes GLUT4 translocation in skeletal muscle. Biochemical and Biophysical Research Communications, 2008, 377, 286-290.	2.1	107
9	Cytochrome <i>bd</i> Biosynthesis in <i>Bacillus subtilis</i> : Characterization of the <i>cydABCD</i> Operon. Journal of Bacteriology, 1998, 180, 6571-6580.	2.2	98
10	A Single-Batch Fermentation System to Simulate Human Colonic Microbiota for High-Throughput Evaluation of Prebiotics. PLoS ONE, 2016, 11, e0160533.	2.5	92
11	Identification of additional TnrAâ€regulated genes of <i>Bacillus subtilis</i> associated with a TnrA box. Molecular Microbiology, 2003, 49, 157-165.	2.5	90
12	<scp>D</scp> -Pinitol and <i>myo</i> -Inositol Stimulate Translocation of Glucose Transporter 4 in Skeletal Muscle of C57BL/6 Mice. Bioscience, Biotechnology and Biochemistry, 2010, 74, 1062-1067.	1.3	89
13	DBTBS: a database of Bacillus subtilis promoters and transcription factors. Nucleic Acids Research, 2001, 29, 278-280.	14.5	70
14	Rat L6 myotubes as an inÂvitro model system to study GLUT4-dependent glucose uptake stimulated by inositol derivatives. Cytotechnology, 2007, 55, 103-108.	1.6	70
15	Green and Black Tea Suppress Hyperglycemia and Insulin Resistance by Retaining the Expression of Glucose Transporter 4 in Muscle of High-Fat Diet-Fed C57BL/6J Mice. Journal of Agricultural and Food Chemistry, 2010, 58, 12916-12923.	5.2	69
16	Enhanced production of 2,3-butanediol by engineered Bacillus subtilis. Applied Microbiology and Biotechnology, 2012, 94, 651-658.	3.6	68
17	DNA microarray analysis ofBacillus subtilissigma factors of extracytoplasmic function family. FEMS Microbiology Letters, 2003, 220, 155-160.	1.8	63
18	Curcumin suppresses the transformation of an aryl hydrocarbon receptor through its phosphorylation. Archives of Biochemistry and Biophysics, 2007, 466, 267-273.	3.0	58

#	Article	IF	CITATIONS
19	Interaction of a Repressor and its Binding Sites for Regulation of the Bacillussubtilis iol Divergon. Journal of Molecular Biology, 1999, 285, 917-929.	4.2	57
20	Genetic Modification of Bacillus subtilis for Production of d - chiro -Inositol, an Investigational Drug Candidate for Treatment of Type 2 Diabetes and Polycystic Ovary Syndrome. Applied and Environmental Microbiology, 2006, 72, 1310-1315.	3.1	54
21	Interaction between the aryl hydrocarbon receptor and its antagonists, flavonoids. Biochemical and Biophysical Research Communications, 2007, 359, 822-827.	2.1	53
22	The Bacillus subtilis ywkA gene encodes a malic enzyme and its transcription is activated by the YufL/YufM two-component system in response to malate. Microbiology (United Kingdom), 2003, 149, 2331-2343.	1.8	52
23	Systematic study of gene expression and transcription organization in the gntZ–ywaA region of the Bacillus subtilis genome. Microbiology (United Kingdom), 2000, 146, 573-579.	1.8	52
24	Identification of Two myo-Inositol Transporter Genes of Bacillus subtilis. Journal of Bacteriology, 2002, 184, 983-991.	2.2	50
25	Three Asparagine Synthetase Genes of <i>Bacillus subtilis</i> . Journal of Bacteriology, 1999, 181, 6081-6091.	2.2	48
26	Tea catechins modulate the glucose transport system in 3T3-L1 adipocytes. Food and Function, 2010, 1, 167.	4.6	47
27	The fifth gene of the iol operon of Bacillus subtilis, iolE, encodes 2-keto-myo-inositol dehydratase. Microbiology (United Kingdom), 2004, 150, 571-580.	1.8	46
28	Epigallocatechin gallate induces GLUT4 translocation in skeletal muscle through both PI3K- and AMPK-dependent pathways. Food and Function, 2018, 9, 4223-4233.	4.6	46
29	An Operon for a Putative ATP-Binding Cassette Transport System Involved in Acetoin Utilization of <i>Bacillus subtilis</i> . Journal of Bacteriology, 2000, 182, 5454-5461.	2.2	45
30	2,3,7,8-Tetrachlorodibenzo-p-Dioxin Impairs an Insulin Signaling Pathway through the Induction of Tumor Necrosis Factor- $\hat{1}$ ± in Adipocytes. Toxicological Sciences, 2010, 115, 482-491.	3.1	45
31	Suppression mechanisms of flavonoids on aryl hydrocarbon receptor-mediated signal transduction. Archives of Biochemistry and Biophysics, 2010, 501, 134-141.	3.0	45
32	Co-Inoculation of Bacillus velezensis Strain S141 and Bradyrhizobium Strains Promotes Nodule Growth and Nitrogen Fixation. Microorganisms, 2020, 8, 678.	3.6	44
33	Transcriptional regulation of Bacillus thuringiensis subsp. israelensis mosquito larvicidal crystal protein gene cryIVA. Journal of Bacteriology, 1993, 175, 2750-2753.	2.2	42
34	Predicting metals sensed by ArsRâ€SmtB repressors: allosteric interference by a nonâ€effector metal. Molecular Microbiology, 2006, 59, 1341-1356.	2.5	40
35	Counterselection System for Geobacillus kaustophilus HTA426 through Disruption ofpyrFandpyrR. Applied and Environmental Microbiology, 2012, 78, 7376-7383.	3.1	40
36	ldentification of Two Major Ammonia-Releasing Reactions Involved in Secondary Natto Fermentation. Bioscience, Biotechnology and Biochemistry, 2008, 72, 1869-1876.	1.3	39

#	Article	IF	CITATIONS
37	Identification and Expression of the Bacillus subtilis Fructose-1,6-Bisphosphatase Gene (fbp). Journal of Bacteriology, 1998, 180, 4309-4313.	2.2	39
38	Polysaccharide-Degrading Thermophiles Generated by Heterologous Gene Expression in Geobacillus kaustophilus HTA426. Applied and Environmental Microbiology, 2013, 79, 5151-5158.	3.1	36
39	Identification of two scyllo-inositol dehydrogenases in Bacillus subtilis. Microbiology (United) Tj ETQq1 1 0.78	84314.rgBT / 1.8	Overlock 10
40	Negative Transcriptional Regulation of the <i>ilv-leu</i> Operon for Biosynthesis of Branched-Chain Amino Acids through the <i>Bacillus subtilis</i> Global Regulator TnrA. Journal of Bacteriology, 2004, 186, 7971-7979.	2.2	34
41	Molokhia (Corchorus olitorius L.) extract suppresses transformation of the aryl hydrocarbon receptor induced by dioxins. Food and Chemical Toxicology, 2006, 44, 250-260.	3.6	34
42	Accumulation of gene-targeted Bacillus subtilis mutations that enhance fermentative inosine production. Applied Microbiology and Biotechnology, 2010, 87, 2195-2207.	3.6	34
43	A cell factory of Bacillus subtilis engineered for the simple bioconversion of myo-inositol to scyllo-inositol, a potential therapeutic agent for Alzheimer's disease. Microbial Cell Factories, 2011, 10, 69.	4.0	34
44	Subcellular localization of flavonol aglycone in hepatocytes visualized by confocal laser scanning fluorescence microscope. Cytotechnology, 2009, 59, 177-182.	1.6	33
45	Genetic Transformation of Geobacillus kaustophilus HTA426 by Conjugative Transfer of Host-Mimicking Plasmids. Journal of Microbiology and Biotechnology, 2012, 22, 1279-1287.	2.1	33
46	Cloning and Sequencing of a 36-kb Region of the Bacillus subtilis Genome between the gnt and iol Operons. DNA Research, 1995, 2, 61-69.	3.4	32
47	Antagonistic and agonistic effects of indigoids on the transformation of an aryl hydrocarbon receptor. Archives of Biochemistry and Biophysics, 2008, 470, 187-199.	3.0	31
48	Missense Mutations in the Bacillus subtilis gnt Repressor that Diminish Operator Binding Ability. Journal of Molecular Biology, 1993, 231, 167-174.	4.2	30
49	Effects ofBacillus thuringiensisvar.israelensis20-kDa Protein on Production of theBti130-kDa Crystal Protein inEscherichia coli. Bioscience, Biotechnology and Biochemistry, 1992, 56, 1429-1433.	1.3	28
50	Dual Regulation of the Bacillus subtilis Regulon Comprising the ImrAB and yxaGH Operons and yxaF Gene by Two Transcriptional Repressors, LmrA and YxaF, in Response to Flavonoids. Journal of Bacteriology, 2007, 189, 5170-5182.	2.2	28
51	Comparison of three tannases cloned from closely related lactobacillus species: L. Plantarum, L. Paraplantarum, and L. Pentosus. BMC Microbiology, 2014, 14, 87.	3.3	28
52	Bacillus subtilis LmrA Is a Repressor of the ImrAB and yxaGH Operons: Identification of Its Binding Site and Functional Analysis of ImrB and yxaGH. Journal of Bacteriology, 2004, 186, 5640-5648.	2.2	26
53	Suppressive Effects of Ethanolic Extracts from Propolis and Its Main Botanical Origin on Dioxin Toxicity. Journal of Agricultural and Food Chemistry, 2005, 53, 10306-10309.	5.2	26
54	Alkaline Serine Protease AprE Plays an Essential Role in Poly-γ-glutamate Production during Natto Fermentation. Bioscience, Biotechnology and Biochemistry, 2013, 77, 802-809.	1.3	24

#	Article	IF	CITATIONS
55	Organization and Expression of the Bacillus subtilis sigY Operon. Journal of Biochemistry, 2003, 134, 935-946.	1.7	22
56	Enhanced secretion of natto phytase by <i>Bacillus subtilis</i> . Bioscience, Biotechnology and Biochemistry, 2015, 79, 1906-1914.	1.3	22
57	Bradyrhizobium diazoefficiens USDA110 PhaR functions for pleiotropic regulation of cellular processes besides PHB accumulation. BMC Microbiology, 2018, 18, 156.	3.3	22
58	A new-generation of Bacillus subtilis cell factory for further elevated scyllo-inositol production. Microbial Cell Factories, 2017, 16, 67.	4.0	21
59	Three inositol dehydrogenases involved in utilization and interconversion of inositol stereoisomers in a thermophile, Geobacillus kaustophilus HTA426. Microbiology (United Kingdom), 2012, 158, 1942-1952.	1.8	19
60	A second-generation <i>Bacillus</i> cell factory for rare inositol production. Bioengineered, 2014, 5, 331-334.	3.2	19
61	Taurine does not affect the composition, diversity, or metabolism of human colonic microbiota simulated in a single-batch fermentation system. PLoS ONE, 2017, 12, e0180991.	2.5	19
62	An improved Bacillus subtilis cell factory for producing scyllo-inositol, a promising therapeutic agent for Alzheimer's disease. Microbial Cell Factories, 2013, 12, 124.	4.0	18
63	Characterization of the native form and the carboxyâ€terminally truncated halotolerant form of αâ€amylases from <i>Bacillus subtilis</i> strain FPâ€133. Journal of Basic Microbiology, 2015, 55, 780-789.	3.3	18
64	Bacillus subtilis 5′-nucleotidases with various functions and substrate specificities. BMC Microbiology, 2016, 16, 249.	3.3	18
65	PhaP phasins play a principal role in poly-β-hydroxybutyrate accumulation in free-living Bradyrhizobium japonicum. BMC Microbiology, 2013, 13, 290.	3.3	17
66	Detection of Orally Administered Inositol Stereoisomers in Mouse Blood Plasma and Their Effects on Translocation of Glucose Transporter 4 in Skeletal Muscle Cells. Journal of Agricultural and Food Chemistry, 2013, 61, 4850-4854.	5.2	17
67	Motif-Guided Identification of a Glycoside Hydrolase Family 1 α- <scp>L</scp> -Arabinofuranosidase in <i>Bifidobacterium adolescentis</i> . Bioscience, Biotechnology and Biochemistry, 2013, 77, 1709-1714.	1.3	17
68	Secretion of heterologous thermostable cellulases in Bacillus subtilis. Journal of General and Applied Microbiology, 2014, 60, 175-182.	0.7	17
69	High-throughput evaluation of aryl hydrocarbon receptor-binding sites selected via chromatin immunoprecipitation-based screening in Hepa-1c1c7 cells stimulated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Genes and Genetic Systems, 2008, 83, 455-468.	0.7	16
70	Genome Sequence of Bacillus velezensis S141, a New Strain of Plant Growth-Promoting Rhizobacterium Isolated from Soybean Rhizosphere. Genome Announcements, 2017, 5, .	0.8	15
71	Cacao Polyphenol Extract Suppresses Transformation of an Aryl Hydrocarbon Receptor in C57BL/6 Mice. Journal of Agricultural and Food Chemistry, 2008, 56, 10399-10405.	5.2	14
72	Molecular Cloning and Sequence Analysis of Two Distinct Halotolerant Extracellular Proteases fromBacillus subtilisFP-133. Bioscience, Biotechnology and Biochemistry, 2011, 75, 148-151.	1.3	14

#	Article	IF	CITATIONS
73	Improvement of Transformation Efficiency by Strategic Circumvention of Restriction Barriers in Streptomyces griseus. Journal of Microbiology and Biotechnology, 2011, 21, 675-678.	2.1	14
74	Aryl hydrocarbon receptor-mediated induction of the cytosolic phospholipase A2α gene by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mouse hepatoma Hepa-1c1c7 cells. Journal of Bioscience and Bioengineering, 2009, 108, 277-281.	2.2	13
75	Catechins in tea suppress the activity of cytochrome P450 1A1 through the aryl hydrocarbon receptor activation pathway in rat livers. International Journal of Food Sciences and Nutrition, 2015, 66, 300-307.	2.8	13
76	Functionalmyo-Inositol Catabolic Genes ofBacillus subtilisNatto Are Involved in Depletion of Pinitol in Natto (Fermented Soybean). Bioscience, Biotechnology and Biochemistry, 2006, 70, 1913-1920.	1.3	12
77	Differential Substrate Specificity of Two Inositol Transporters of <i>Bacillus subtilis</i> . Bioscience, Biotechnology and Biochemistry, 2010, 74, 1312-1314.	1.3	12
78	Heterologous expression and characterisation of the <i>Aspergillus</i> aspartic protease involved in the hydrolysis and decolorisation of redâ€pigmented proteins. Journal of the Science of Food and Agriculture, 2017, 97, 95-101.	3.5	12
79	A bacterial cell factory converting glucose into scyllo-inositol, a therapeutic agent for Alzheimer's disease. Communications Biology, 2020, 3, 93.	4.4	12
80	Bacillus subtilis gnt repressor mutants that diminish gluconate-binding ability. Journal of Bacteriology, 1995, 177, 4813-4816.	2.2	10
81	<i>Bacillus subtilis iolU</i> encodes an additional NADP+-dependent <i>scyllo</i> -inositol dehydrogenase. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1026-1032.	1.3	10
82	Influences of N-linked glycosylation on the biochemical properties of aspartic protease from Aspergillus glaucus MA0196. Process Biochemistry, 2019, 79, 74-80.	3.7	10
83	Engineering Bacillus subtilis Cells as Factories: Enzyme Secretion and Value-added Chemical Production. Biotechnology and Bioprocess Engineering, 2020, 25, 872-885.	2.6	10
84	Analysis of an insertional operator mutation (gntOi) that affects the expression level of theBacillus subtilis gnt operon, and characterization ofgntOi suppressor mutations. Molecular Genetics and Genomics, 1995, 248, 583-591.	2.4	9
85	Genome mining and motif modifications of glycoside hydrolase family 1 members encoded by Geobacillus kaustophilus HTA426 provide thermostable 6-phospho-β-glycosidase and β-fucosidase. Applied Microbiology and Biotechnology, 2013, 97, 2929-2938.	3.6	9
86	Rapid conjugative mobilization of a 100Âkb segment of Bacillus subtilis chromosomal DNA is mediated by a helper plasmid with no ability for self-transfer. Microbial Cell Factories, 2018, 17, 13.	4.0	9
87	Nucleotide Sequence and Features of the Bacillus licheniformis gnt Operon. DNA Research, 1994, 1, 157-162.	3.4	7
88	Discovery of Novel 2′,3′,4′-Trihydroxy-2-phenylacetophenone Derivatives as Anti-Gram-Positive Antibacterial Agents. Bioscience, Biotechnology and Biochemistry, 2009, 73, 124-128.	1.3	7
89	Organic solvent-tolerant elastase efficiently hydrolyzes insoluble, cross-linked, protein fiber of eggshell membranes. Biotechnology Letters, 2012, 34, 949-955.	2.2	6
90	Hyperphosphorylation of DegU cancels CcpA-dependent catabolite repression of rocG in Bacillus subtilis. BMC Microbiology, 2015, 15, 43.	3.3	6

#	Article	IF	CITATIONS
91	Characterization and mutation analysis of a halotolerant serine protease from a new isolate of Bacillus subtilis. Biotechnology Letters, 2018, 40, 189-196.	2.2	6
92	Enantioselective N-acetylation of 2-phenylglycine by an unusual N-acetyltransferase from Chryseobacterium sp Biotechnology Letters, 2013, 35, 1053-1059.	2.2	5
93	Bacillus subtilis IolQ (DegA) is a transcriptional repressor of iolX encoding NAD+-dependent scyllo-inositol dehydrogenase. BMC Microbiology, 2017, 17, 154.	3.3	5
94	A novel method for transforming the thermophilic bacterium Geobacillus kaustophilus. Microbial Cell Factories, 2018, 17, 127.	4.0	5
95	Complete Genome Sequence of Thermophilic Bacterium Aeribacillus pallidus PI8. Microbiology Resource Announcements, 2020, 9, .	0.6	5
96	Identification of a Functional 2-keto-myo-Inositol Dehydratase Gene ofSinorhizobium frediiUSDA191 Required formyo-Inositol Utilization. Bioscience, Biotechnology and Biochemistry, 2006, 70, 2957-2964.	1.3	4
97	Assessment of Bacillus subtilis Plasmid pLS20 Conjugation in the Absence of Quorum Sensing Repression. Microorganisms, 2021, 9, 1931.	3.6	4
98	Screening of indigenous plants from Japan for modulating effects on transformation of the aryl hydrocarbon receptor. Asian Pacific Journal of Cancer Prevention, 2006, 7, 208-20.	1.2	4
99	Transcriptional regulation of the Bacillus subtilis asnH operon and role of the 5′-proximal long sequence triplication in RNA stabilization. Microbiology (United Kingdom), 2010, 156, 1632-1641.	1.8	3
100	Molecular Characterization of a Novel <i>N</i> -Acetyltransferase from Chryseobacterium sp. Applied and Environmental Microbiology, 2014, 80, 1770-1776.	3.1	3
101	Importance of the Central Region of 130-kDa Insecticidal Proteins ofBacillus thuringiensisvar.israelensisfor Their Activityin Vivoandin Vitro. Bioscience, Biotechnology and Biochemistry, 1993, 57, 584-590.	1.3	2
102	Antagonistic Effect of the Ainu‧elected Traditional Beneficial Plants on the Transformation of an Aryl Hydrocarbon Receptor. Journal of Food Science, 2012, 77, C420-9.	3.1	2
103	Polyamino acid display on cell surfaces enhances salt and alcohol tolerance of Escherichia coli. Biotechnology Letters, 2015, 37, 429-435.	2.2	2
104	Production of <i>scyllo</i> -Inositol: Conversion of Rice Bran into a Promising Disease-Modifying Therapeutic Agent for Alzheimer's Disease. Journal of Nutritional Science and Vitaminology, 2019, 65, S139-S142.	0.6	2
105	Inositol Derivatives Stimulate Glucose Transport in Muscle Cells. , 2008, , 217-222.		2
106	Conjugation Operons in Gram-Positive Bacteria with and without Antitermination Systems. Microorganisms, 2022, 10, 587.	3.6	2
107	Insecticidal Activity of a Peptide Containing the 30th to 695th Amino Acid Residues of the 130-kDa Protein of <i>Bacillus thuringiensis</i> var. <i>israelensis</i> . Agricultural and Biological Chemistry, 1989, 53, 2121-2127.	0.3	1
108	Complete Genome Sequence of Nitrogen-Fixing <i>Paenibacillus</i> sp. Strain URB8-2, Isolated from the Rhizosphere of Wild Grass. Microbiology Resource Announcements, 2020, 9, .	0.6	1

#	Article	IF	CITATIONS
109	Identification of a repressor for the two iol operons required for inositol catabolism in Geobacillus kaustophilus. Microbiology (United Kingdom), 2021, 167, .	1.8	1
110	A novel method for transforming Geobacillus kaustophilus with a chromosomal segment of Bacillus subtilis transferred via pLS20-dependent conjugation. Microbial Cell Factories, 2022, 21, 34.	4.0	1
111	Functional analysis of a gene cluster for putative bacteriocin deduced from the genome sequence of <i>Aeribacillus pallidus</i> PI8. Journal of General and Applied Microbiology, 2022, , .	0.7	1
112	Constitutive expression of the global regulator AbrB restores the growth defect of a genome-reduced <i>Bacillus subtilis</i> strain and improves its metabolite production. DNA Research, 2022, 29, .	3.4	1
113	Binding of an Engineered 130-kDa Insecticidal Protein ofBacillus thuringiensisvar.israelensisto Insect Cell Lines. Bioscience, Biotechnology and Biochemistry, 1993, 57, 1200-1201.	1.3	0
114	ã,²ãfŽãƒæƒå±ã«åŸºã¥ãæž⁻è‰èŒã®é€†éºä¼å¦çš"ç"ç©¶. Nippon Nogeikagaku Kaishi, 2003, 77, 12-17.	0.0	0
115	Homology modeling and prediction of the amino acid residues participating in the transfer of acetyl-CoA to arylalkylamine by the N-acetyltransferase from Chryseobacterium sp Biotechnology Letters, 2017, 39, 1699-1707.	2.2	0
116	Insulin-Mimetic Activity of Inositol Derivatives Depends on Phosphorylation of PKCζ/λ in L6 Myotubes. , 2010, , 327-331.		0