List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4015597/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytokine/Jak/Stat Signaling Mediates Regeneration and Homeostasis in the Drosophila Midgut. Cell, 2009, 137, 1343-1355.	28.9	896
2	Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nature Cell Biology, 2003, 5, 578-581.	10.3	828
3	Endoreplication Cell Cycles. Cell, 2001, 105, 297-306.	28.9	780
4	Coordination of Growth and Cell Division in the Drosophila Wing. Cell, 1998, 93, 1183-1193.	28.9	732
5	Drosophila's Insulin/PI3-Kinase Pathway Coordinates Cellular Metabolism with Nutritional Conditions. Developmental Cell, 2002, 2, 239-249.	7.0	632
6	Genetic control of cell division patterns in the Drosophila embryo. Cell, 1989, 57, 177-187.	28.9	604
7	Drosophila myc Regulates Cellular Growth during Development. Cell, 1999, 98, 779-790.	28.9	598
8	Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nature Cell Biology, 2003, 5, 566-571.	10.3	590
9	The three postblastoderm cell cycles of Drosophila embryogenesis are regulated in G2 by string. Cell, 1990, 62, 469-480.	28.9	442
10	EGFR/Ras/MAPK Signaling Mediates Adult Midgut Epithelial Homeostasis and Regeneration in Drosophila. Cell Stem Cell, 2011, 8, 84-95.	11.1	406
11	How flies get their size: genetics meets physiology. Nature Reviews Genetics, 2006, 7, 907-916.	16.3	366
12	Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nature Cell Biology, 2005, 7, 295-302.	10.3	356
13	Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes and Development, 2003, 17, 1101-1114.	5.9	352
14	Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell, 1986, 44, 365-372.	28.9	337
15	Filling out the Hippo pathway. Nature Reviews Molecular Cell Biology, 2007, 8, 613-621.	37.0	326
16	From Cell Structure to Transcription: Hippo Forges a New Path. Cell, 2006, 124, 267-273.	28.9	306
17	Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nature Reviews Molecular Cell Biology, 2014, 15, 197-210.	37.0	291
18	The Hippo pathway regulates intestinal stem cell proliferation during <i>Drosophila</i> adult midgut regeneration. Development (Cambridge), 2010, 137, 4147-4158.	2.5	282

#	Article	IF	CITATIONS
19	Ras1 Promotes Cellular Growth in the Drosophila Wing. Cell, 2000, 100, 435-446.	28.9	272
20	Wingless and Notch regulate cell-cycle arrest in the developing Drosophila wing. Nature, 1998, 394, 82-84.	27.8	265
21	EGFR signaling regulates the proliferation of <i>Drosophila</i> adult midgut progenitors. Development (Cambridge), 2009, 136, 483-493.	2.5	235
22	Fly-FUCCI: A Versatile Tool for Studying Cell Proliferation in Complex Tissues. Cell Reports, 2014, 7, 588-598.	6.4	232
23	Regional Cell-Specific Transcriptome Mapping Reveals Regulatory Complexity in the Adult Drosophila Midgut. Cell Reports, 2015, 12, 346-358.	6.4	202
24	Connections between growth and the cell cycle. Current Opinion in Cell Biology, 1998, 10, 784-790.	5.4	177
25	Mechanisms controlling cell cycle exit upon terminal differentiation. Current Opinion in Cell Biology, 2007, 19, 697-704.	5.4	171
26	Interactions between Ras1, dMyc, and dPI3K signaling in the developing Drosophila wing. Genes and Development, 2002, 16, 2286-2299.	5.9	157
27	Intestinal stem cells in the adult Drosophila midgut. Experimental Cell Research, 2011, 317, 2780-2788.	2.6	152
28	dMyc is required for larval growth and endoreplication in Drosophila. Development (Cambridge), 2004, 131, 2317-2327.	2.5	150
29	Intestinal stem cell function in Drosophila and mice. Current Opinion in Genetics and Development, 2012, 22, 354-360.	3.3	138
30	Niche appropriation by Drosophila intestinal stem cellÂtumours. Nature Cell Biology, 2015, 17, 1182-1192.	10.3	138
31	Endoreplication. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012948-a012948.	5.5	131
32	Why size matters: altering cell size. Current Opinion in Genetics and Development, 2002, 12, 565-571.	3.3	129
33	Control of Drosophila endocycles by E2F and CRL4CDT2. Nature, 2011, 480, 123-127.	27.8	127
34	Polyploidy in tissue homeostasis and regeneration. Development (Cambridge), 2018, 145, .	2.5	127
35	Repression and turnover pattern fushi tarazu RNA in the early Drosophila embryo. Cell, 1986, 47, 747-754.	28.9	126
36	TOR-mediated autophagy regulates cell death in <i>Drosophila</i> neurodegenerative disease. Journal of Cell Biology, 2009, 186, 703-711.	5.2	126

#	Article	IF	CITATIONS
37	Negative Regulation of dE2F1 by Cyclin-Dependent Kinases Controls Cell Cycle Timing. Cell, 2004, 117, 253-264.	28.9	123
38	EGFR/Ras Signaling Controls Drosophila Intestinal Stem Cell Proliferation via Capicua-Regulated Genes. PLoS Genetics, 2015, 11, e1005634.	3.5	115
39	<i>Escargot</i> maintains stemness and suppresses differentiation in <i>Drosophila</i> intestinal stem cells. EMBO Journal, 2014, 33, 2967-2982.	7.8	113
40	Intrinsic Negative Cell Cycle Regulation Provided by PIP Box- and Cul4Cdt2-Mediated Destruction of E2f1 during S Phase. Developmental Cell, 2008, 15, 890-900.	7.0	111
41	A Double-Assurance Mechanism Controls Cell Cycle Exit upon Terminal Differentiation in Drosophila. Developmental Cell, 2007, 12, 631-643.	7.0	95
42	EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration. Nature Communications, 2017, 8, 15125.	12.8	90
43	Drosophila Cyclin D/Cdk4 Requires Hif-1 Prolyl Hydroxylase to Drive Cell Growth. Developmental Cell, 2004, 6, 241-251.	7.0	84
44	Fitness trade-offs incurred by ovary-to-gut steroid signalling in Drosophila. Nature, 2020, 584, 415-419.	27.8	83
45	<i>Drosophila</i> TIF-IA is required for ribosome synthesis and cell growth and is regulated by the TOR pathway. Journal of Cell Biology, 2007, 179, 1105-1113.	5.2	82
46	From small flies come big discoveries about size control. Nature Cell Biology, 1999, 1, E191-E192.	10.3	71
47	A genetic switch, based on negative regulation, sharpens stripes inDrosophila embryos. Genesis, 1989, 10, 124-142.	2.1	66
48	Dpp/Gbb signaling is required for normal intestinal regeneration during infection. Developmental Biology, 2015, 399, 189-203.	2.0	65
49	The Drosophila mitochondrial ribosomal protein mRpL12 is required for Cyclin D/Cdk4-driven growth. EMBO Journal, 2005, 24, 623-634.	7.8	63
50	Growth regulation by oncogenes — new insights from model organisms. Current Opinion in Genetics and Development, 2001, 11, 19-26.	3.3	61
51	An SH3PX1-Dependent Endocytosis-Autophagy Network Restrains Intestinal Stem Cell Proliferation by Counteracting EGFR-ERK Signaling. Developmental Cell, 2019, 49, 574-589.e5.	7.0	57
52	A robust cell cycle control mechanism limits E2F-induced proliferation of terminally differentiated cells in vivo. Journal of Cell Biology, 2010, 189, 981-996.	5.2	54
53	The Transcriptional Repressor dMnt Is a Regulator of Growth in Drosophila melanogaster. Molecular and Cellular Biology, 2005, 25, 7078-7091.	2.3	52
54	Damage sensing by a Nox-Ask1-MKK3-p38 signaling pathway mediates regeneration in the adult Drosophila midgut. Nature Communications, 2019, 10, 4365.	12.8	49

#	Article	IF	CITATIONS
55	Intestinal Stem Cell Pool Regulation in Drosophila. Stem Cell Reports, 2017, 8, 1479-1487.	4.8	47
56	ATF3 acts as a rheostat to control JNK signalling during intestinal regeneration. Nature Communications, 2017, 8, 14289.	12.8	46
57	Enhanced expression of thioredoxinâ€interactingâ€protein regulates oxidative DNA damage and aging. FEBS Letters, 2018, 592, 2297-2307.	2.8	45
58	Genomic analysis of COP9 signalosome function in Drosophila melanogaster reveals a role in temporal regulation of gene expression. Molecular Systems Biology, 2007, 3, 108.	7.2	41
59	Proliferative control in Drosophila stem cells. Current Opinion in Cell Biology, 2008, 20, 699-706.	5.4	39
60	Flow Cytometric Analysis of Drosophila Cells. Methods in Molecular Biology, 2008, 420, 373-389.	0.9	38
61	Egfr/Ras signaling regulates DE-cadherin/Shotgun localization to control vein morphogenesis in the Drosophila wing. Developmental Biology, 2007, 311, 25-39.	2.0	35
62	Rap1 maintains adhesion between cells to affect Egfr signaling and planar cell polarity in Drosophila. Developmental Biology, 2009, 333, 143-160.	2.0	33
63	LST8 Regulates Cell Growth via Target-of-Rapamycin Complex 2 (TORC2). Molecular and Cellular Biology, 2012, 32, 2203-2213.	2.3	33
64	A Balance of Yki/Sd Activator and E2F1/Sd Repressor Complexes Controls Cell Survival and Affects Organ Size. Developmental Cell, 2017, 43, 603-617.e5.	7.0	32
65	Cyclin D Does Not Provide Essential Cdk4-Independent Functions in Drosophila. Genetics, 2004, 168, 867-875.	2.9	31
66	Insect Gut Regeneration. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040915.	5.5	24
67	Yorkie and Scalloped: Partners in Growth Activation. Developmental Cell, 2008, 14, 315-316.	7.0	23
68	Age-related changes in polycomb gene regulation disrupt lineage fidelity in intestinal stem cells. ELife, 2021, 10, .	6.0	20
69	How size is controlled: from Hippos to Yorkies. Nature Cell Biology, 2007, 9, 1225-1227.	10.3	19
70	Remodelling of oxygen-transporting tracheoles drives intestinal regeneration and tumorigenesis in Drosophila. Nature Cell Biology, 2021, 23, 497-510.	10.3	19
71	The role of translationally controlled tumor protein in proliferation of <i>Drosophila</i> intestinal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26591-26598.	7.1	15
72	Translational control of <i>E2f1</i> regulates the <i>Drosophila</i> cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	10

#	Article	IF	CITATIONS
73	The Krüppel-like factor Cabut has cell cycle regulatory properties similar to E2F1. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	5
74	Lipoic acid and autophagy: new insights into stem cell aging. EMBO Reports, 2020, 21, e51175.	4.5	2
75	Comparative Generalized Logic Modeling Reveals Differential Gene Interactions during Cell Cycle Exit in Wing Development. Lecture Notes in Informatics (LNI), Proceedings - Series of the Gesellschaft Fur Informatik (GI), 2009, 157, 143-152.	0.0	1